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ABSTRACT

The tutorial presents state-of-the-art visualization techniques in-
spired by traditional technical and medical illustrations. Such tech-
niques exploit the perception of the human visual system and pro-
vide effective visual abstractions to make the visualization clearly
understandable. Visual emphasis and abstraction has been used for
expressive presentation from prehistoric paintings to nowadays sci-
entific and medical illustrations. Many of the expressive techniques
used in art are adopted in computer graphics, and are denoted as
illustrative or non-photorealistic rendering. Different stroke tech-
niques, or brush properties express a particular level of abstraction.
Feature emphasis or feature suppression is achieved by combining
different abstraction levels in illustrative rendering.

Challenges in visualization research are very large data visual-
ization as well as multi-dimensional data visualization. To effec-
tively convey the most important visual information there is a sig-
nificant need for visual abstraction. For less relevant information
the dedicated image space is reduced to enhance more prominent
features. The discussed techniques in the context of scientific vi-
sualization are based on iso-surfaces and volume rendering. Apart
from visual abstraction, i.e., illustrative representation, the visibility
of prominent features can be achieved by illustrative visualization
techniques such as cut-away views or ghosted views. The struc-
tures that occlude the most prominent information are suppressed
in order to clearly see more interesting parts. A different smart way
to provide information on the data is using exploded views or other
types of deformation. Furthermore intuitive feature classification
via 3D painting and manipulation with the classified data including
label placement is presented.

Discussed non-photorealistic and illustrative techniques from vi-
sualization and graphics are shown from the perspective as tools
for illustrators from medicine, botany, archeology, and zoology.
The limitations of existing NPR systems for science illustration are
highlighted, and proposals for possible new directions are made.
[lustrative visualization is demonstrated via application-specific
tasks in medical visualization. An important aspect as compared
to traditional medical illustrations is the interactivity and real-time
manipulation of the acquired patient data. This can be very useful
in anatomy education. Another application area is surgical planning
which is demonstrated with two case studies: neck dissection and
liver surgery planning.

PREREQUISITES

The tutorial assumes basic knowledge in scientific visualization al-
gorithms and non-photorealistic rendering techniques. Any knowl-
edge of illustration techniques for science and medicine may be
helpful but is not required. In general the level of the tutorial can
be considered as beginning.

INTENDED AUDIENCE

Intended audience consists of domain experts like medical doctors
and biologists, visualization researchers, programmers, illustrators,
and others interested in techniques for meaningful depictions of the
data and its applicability to current visualization challenges.

SCHEDULE

The tutorial is planned as a full day tutorial. The talks are
grouped into three main parts: Introduction, Illustrative Tech-
niques in Visualization, and Applications of Illustrative Techniques
in Science and Medicine. A more detailed schedule including
speaker’s name and talk length is given in the table in Figure 1.
For further details about the tutorial see the associated webpage
http://www.cg.tuwien.ac.at/groups/vis/vis_tutorial/.

OUTLINE

The tutorial is divided into the following talks:

K. Biihler: Human Visual Perception and Illustrative As-
pects of Art employs a survey on the history of technical, sci-
entific and medical illustrations as motivation to demonstrate how
artists and graphic designers developed the ability to encode com-
plex information within a single graphic representation. We start
with an overview on physiological and psychological aspects of
human perception, and their manifestation in common illustration
techniques and design principles. This will include an introduc-
tion to commonly used materials, and basic artistic elements like
points, lines, continuous tone and colour. A discussion on the use
of perspective, focus, selective enhancement, transparency and ab-
straction will lead us to advanced design principles that aim at rep-
resenting multi layered information using e.g. focus and context,
cut-away views, exploded views, and the combination of realism
and abstraction. Weighing up advantages and limitations of “hand
made” scientific illustrations will link up with the following talks
that introduce and discuss the art of illustrative rendering.



Introduction

M. E. Groller Introduction of Speakers and Topics 10 min
M. E. Groller and K. Bithler =~ Human Visual Perception and Illustrative Aspects of Art 25 min
D. Ebert [lustrative and Non-Photorealistig Rendering in Computer Graphics 25 min
Hlustrative Techniques in Visualization

M. Hadwiger lustrative Visualization for Isosurfaces and Volumes 60 min
I. Viola Smart Visibility in Visualization 60 min
Applications of Illustrative Techniques in Science and Medicine

M. C. Sousa Visualization Tools for the Science Illustrators: Evaluations and Requirements 40 min
D. Ebert Mlustration Inspired Flow Visualization 20 min
D. Ebert Interactive Medical Illustration System for Surgical Simulation and Education 20 min
D. Stredney Visualization: From My Perspective 40 min
B. Preim Case Studies for Surgical Planning using Illustrative Visualization 60 min
Closing Remarks and Discussion

All Discussion 10 min

Figure 1: Schedule of the Tutorial on lllustrative Visualization

D. Ebert: Illustrative and Non-Photorealistig Rendering in
Computer Graphics introduces a category of rendering techniques
that simulate a style of a particular artistic painting or illustration
technique. In contrast to traditional photorealistic rendering, the
category of illustrative or non-photorealistic rendering (NPR) ex-
ploits artistic abstraction to express the prominence of rendered
objects. We describe general NPR principles and discuss several
NPR categories defined by material basis (ink, charcoal, paint) or
stroke simulation (brushes, hatching, stippling). Furthermore we
show how to use illustrative rendering techniques as visual abstrac-
tion levels for form and shape emphasis. Finally we describe how to
focus the viewer’s attention by varying detail of painterly rendering
according to the distance from the focus (see Figure 2).

Figure 2: Distance-from-focus rendering combining contour render-
ing with direct volume rendering.

M. Hadwiger: Illustrative Visualization of Isosurfaces and
Volumes describes visualization techniques for rendering isosur-

faces with a variety of different shape cues and illustrative tech-
niques such as pen-and-ink style rendering, focusing on styles that
use or depict surface curvature information, such as rendering ridge
and valley lines, and hatching. In addition to techniques operat-
ing on meshes, we illustrate how non-polygonal isosurfaces that
are extracted on-the-fly can be annotated with shape cues based
on implicit surface curvature. We illustrate a GPU-based render-
ing pipeline for high-quality rendering of isosurfaces with real-time
curvature computation and shading.

After decribing surface-based illustration styles we continue
with full volume rendering. We show that segmentation informa-
tion is an especially powerful tool for depicting the objects con-
tained in medical data sets in varying styles. A combination of
non-photorealistic styles with standard direct volume rendering is
a very effective means for separating focus from context objects or
regions. We describe the concept of two-level volume rendering
that integrates different rendering modes and compositing types by
using segmented data and per-object attributes (see Figure 3).

I. Viola: Smart Visibility in Visualization first discusses tech-
niques that modify the visual representation of the data by incor-
porating viewpoint information to provide maximal visual infor-
mation. In illustration such techniques are called cut-away views
or ghosted views. We discuss basic principles and techniques for
automatic generation of cut-away and ghosted visualizations. One
approach is importance-driven feature enhancement, where the vis-
ibility of a particular feature is determined according to assigned
importance information (Figure 4). The most appropriate level of
abstraction is specified automatically to unveil the most important
information. We show the applicability of smart visibility tech-
niques for the visualization of complex dynamical systems, visu-
alization of peripheral arteries, and visualization of the human ab-
domen. Another approach is context-preserving illustrative volume
rendering (Figure 5), which maps transparency to the strength of
specular highlights. This allows to see inside the volume in the ar-
eas of highlights. The human perception can easily complete the



Figure 3: Interactive two level volume rendering where the skin is
rendered with MIP, bones with tone shading, and vessels with shaded
iso-surfacing.

shape of partially transparent parts and therefore additional infor-
mation can be shown there.

Figure 4: Importance-driven volume rendering of the Leopard gecko
dataset. The internal structure is automatically emphasized by sup-
pressing the occluding body parts.

The talk continues with a description of a system for direct vol-
ume manipulation (such as 3D painting) in combination with cut-
away views. Here manipulation metaphores inspired by traditional
illustration are discussed. An important aspect for readily under-
standable visualization is labeling the data with annotations (see
Figure 6). The combination of automatic label placement with vi-
sualized data is presented and new labeling metaphors from the field
of information visualization are discussed.

The second category of smart visibility techniques are based
on object deformation and object splitting. These techniques are
closely related to exploded views, often used for assembly instruc-
tions. We discuss visualization techniques that separate context
information to unveil the inner focus information by splitting the
context into parts and moving them apart. Another visualization
technique enables browsing within the data by applying deforma-
tions like leafing, peeling, or spreading. In the case of time-varying
data we present another visualization technique which is related to
exploded views and is denoted as fanning in time.

M. C. Sousa: Visualization Tools for the Science Illustra-
tors: Evaluations and Requirements introduces the field of Non-

Figure 5: Visualization of a human hand using a dynamic opacity
approach as a function of the specular highlight level.

Figure 6: Volume manipulation and classification and automatic label
placement. All bonal structures have been classified using direct 3D
painting.

Photorealistic Rendering (NPR) from the point of view of the tradi-
tional science illustrator. Topics include the interplay between the
NPR pipeline and the communication/production processes of tra-
ditional illustration, components of the NPR pipeline, such as the
type of input data (images, 3D models, laser scans, MRI), capabil-
ities of existing NPR systems and subject areas such as medicine,
botany, archaeology, zoology, among others (Figure 7). This pre-
sentation will then focus on discussing the limitations of existing
NPR systems for science illustration, followed with proposals for
possible extensions and new directions. Evaluations from trained il-
lustrators of the use and quality of the existing techniques and tools
will be discussed. We will also present and discuss a number of im-
portant requirements provided by science illustrators for devising
novel computer graphics/NPR tools within three main categories of
systems: (1) fully interactive, expecting the user to produce tradi-
tional images from scratch (drawing/painting systems), (2) fully au-
tomatic, producing images using automatic techniques (renderers,
image processing), and (3) hybrid NPR solutions, known as "NPR
Interactive Rendering”, where traditional renderings are produced
partly by the system and partly by the user.



Figure 7: Rendering of three thumb bones (from top to bottom):
distal phalange, proximal phalange and metacarpal 1.

D. Ebert: Illustration Inspired Flow Visualization goes
through the history of flow illustration over the past centuries,
and provides analysis of existing effective styles and visualization
techniques. Then a new interactive flow illustration system is in-
troduced. A more detailed overview of the system functionality
and implemented interaction techniques is given. The applicabil-
ity in flow visualization is demonstrated using new visualization
techniques applied on several time-varying and unstructured flow
datasets (see Figure 8).

Figure 8: Stylistic illustrative visualization of flow over the X38 space-
craft during re-entry, highlighting the bow shock at the nose of the
spacecraft.

D. Ebert: Interactive Medical Illustration System for Sur-
gical Simulation and Education shows the applicability of illus-
trative visualization in medical visualization. A system for sur-
gical simulation and anatomy education is presented. We point
out that the design of an effective illustrative presentation style is
application-specific, i.e., there are different criteria for training and
for education purposes. The presentation of information is highly
dependent on the level of user expertise. We treat interactive il-
lustrative visualization for anatomical education and temporal bone

surgical planning.

D. Stredney: Visualization: From My Perspective will present
his perspective on visualization and emerging developments in NPR
techniques and their use. After a brief introduction of his back-
ground, Don will present the key issues of sensemaking and their
use in clinical research and training that use visualization. Don will
present an overview of representation from a physiological view,
and draw parallels between human visual processing, learning, and
aesthetics. Current work from funded research projects that inte-
grate aspects of NPR for surgical training will be presented. Finally,
suggested guidelines for promoting adoption and creating diverse
teams for development and adaptation will be presented.

B. Preim: Case Studies for Surgical Planning using Illustra-
tive Visualization explains how illustrative visualization can sig-
nificantly improve the spatial perception of feature arrangement for
surgical planning and education training. Both discussed applica-
tions, i.e., the liver surgical training system and the neck dissection
planning (Figure 9), are based on a database of clinical data. In
these specific visualization tasks there are many overlapping inter-
esting features. We present how a suitable selection of visual ab-
stractions, such as a combination of silhouette, surface, and volume
rendering or cut-away illustrative techniques, can make the visual-
ization clearly understandable.

Figure 9: Neck dissection planning with emphasis on the lymph nodes
inspired by cut-away views.

Apart from educational aspects, both applications use visualiza-
tion and interaction techniques to support surgical decisions. The
liver surgery planning system is designed for interactive resection
planning. The neck dissection planning system is designed for in-
teractive path-planning for minimal invasive interventions.

PRESENTER’S BACKGROUND

Ivan Viola graduated in 2002 from the Vienna University
of Technology, Austria, as a Dipl.-Ing. (MSc) in the field
of computer graphics and visualization. He received his PhD
in 2005 for his thesis “Importance-Driven Expressive Visualiza-
tion”. Currently he is managing the exvisation research project
(www.cg.tuwien.ac.at/research/vis/exvisation) focusing on devel-
opment of novel methods for automatically generating expressive
visualizations of complex data. Viola has co-authored several sci-
entific works published on international conferences such as IEEE
Visualization, EuroVis, and Vision Modeling and Visualization and



acted as a reviewer for conferences in the field of computer graphics
and visualization.

Meister E. Groller is associate professor at the Institute of Com-
puter Graphics and Algorithms (ICGA), Vienna University of Tech-
nology. In 1993 he received his PhD from the same university.
His research interests include computer graphics, flow visualiza-
tion, volume visualization, and medical visualization. He is head-
ing the visualization group at ICGA. The group performs basic and
applied research projects in the area of scientific visualization. Dr.
Groller has given lecture series on scientific visualization at various
other universities (Tiibingen, Graz, Praha, Bahia Blanca, Magde-
burg). He is a scientific proponent and member of the Scientific
Advisory Committee of the VRVis Kplus center of excellence. The
center performs applied research in virtual reality and visualization.
Dr. Groller co-authored more than 100 scientific publications and
acted as a reviewer for numerous conferences and journals in the
field. He also serves on various program and paper committees.
Examples include Computers&Graphics, IEEE Transactions on Vi-
sualization and Graphics, EuroVis, IEEE Visualization conference,
Eurographics conference. He is head of the working group on com-
puter graphics of the Austrian Computer Society and member of
IEEE Computer Society, ACM (Association of Computing Machin-
ery), GI (Gesellschaft fiir Informatik), OCG (Austrian Computer
Society).

Markus Hadwiger is a senior researcher in the Medical Vi-
sualization department at the VRVis Research Center in Vienna,
Austria. He received a PhD degree in computer science from the
Vienna University of Technology in 2004, concentrating on high-
quality real-time volume rendering and texture filtering with graph-
ics hardware. Results on rendering segmented volumes and non-
photorealistic volume rendering have been presented at IEEE Vi-
sualization 2003. He is regularly teaching courses and seminars
on computer graphics, visualization, and game programming, in-
cluding two courses at the annual SIGGRAPH conference, and two
tutorials at IEEE Visualization. Before concentrating on scientific
visualization, he was working in the area of computer games and
interactive entertainment.

Katja Biihler is head of the Medical Visualization department
at VRVis Research Center for Virtual Reality and Visualization and
external lecturer for medical visualization at the Vienna Univer-
sity of Technology in Vienna, Austria. Her current research top-
ics are motivated by real world applications in the medical field
and focus mainly on techniques for computer aided diagnosis and
surgery simulation, including specialized solution for segmentation
and visualization. She studied Mathematics with focus on Geom-
etry, Numerics and Computer Science at the University of Karl-
sruhe, Germany and received her diploma in pure Mathematics in
1996. In 2001 she received a PhD in computer science from the
Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology for her work on reliable geometry processing.
Katja Biihler has worked as researcher at the Institute for Applied
Mathematics, University of Karlsruhe, Germany and the Center of
Computer Graphics and Applied Geometry, Universidad Central de
Venezuela, Caracas, Venezuela. She became assistant professor at
the Institute of Computer Graphics and Algorithms, Vienna Uni-
versity of Technology in 1998 and was teaching courses in com-
puter graphics, algorithms and data structures, and programming.
In 2002 she joined the medical visualization group at VRVis as se-
nior researcher and became key researcher in 2003.

Bernhard Preim worked for four years as project leader Surgery
planning at the Center for Medical Visualization and Diagnostic
Systems (MeVis Bremen, Germany) before he was appointed as
full professor for visualization at the computer science department
at the Otto-von-Guericke-University of Magdeburg, Germany. His
research group focusses on medical visualization and specific appli-
cations in surgical education and surgery planning. He is speaker

of the working group Medical Visualization in the German Soci-
ety for Computer Science. He is member of the scientific advisary
boards of ICCAS (International Competence Center on Computer-
Assisted Surgery Leipzig, since 2003) and CURAC (German So-
ciety for Computer- and Roboter-assisted Surgery, since 2004) and
Visiting Professor at the University of Bremen. He is author and co-
author of more than 80 publications, most of them dealing with in-
teractive visualizations in medical applications. His research inter-
ests include 3D interaction techniques, visualization techniques for
medical volume data (visualization of vasculature, transfer function
design, illustrative medical visualization) and computer support for
medical diagnosis and treatment planning, in particular neck dis-
section planning and liver surgery planning.

Mario Costa Sousa is an Assistant Professor in the Department
of Computer Science at the University of Calgary. He holds a M.Sc.
(PUC-Rio, Brazil) and a Ph.D. (University of Alberta) both in Com-
puter Science. He performs research in non-photorealistic render-
ing (NPR), illustrative visualization, 3D modeling and volumetric
display software. His current focus is on research and develop-
ment of NPR methods for 3D model construction/analysis, natural
media simulation, rendering techniques and systems for computer-
generated illustrative visualization and composition in two main
contexts: (1) traditional illustration, by providing tools to help sci-
entific and medical illustrators; (2) scientific analysis and visualiza-
tion, by mainly providing novel ways on visualizing scientific data,
physical phenomena, simulations, etc., and by presenting abstrac-
tions to users in ways that reconcile expressiveness and ease-of-use.
Dr. Sousa also coordinates the Render Group, the NPR research
wing at the Computer Graphics Lab at the University of Calgary.

David Ebert is an Associate Professor in the School of Electrical
and Computer Engineering at Purdue University. His research in-
terests are scientific, medical, and information visualization, com-
puter graphics, animation, and procedural techniques. Dr. Ebert
performs research in volume rendering, illustrative visualization,
realistic rendering, procedural texturing, modeling, and animation,
and modeling natural phenomena. Ebert has been very active in the
graphics community, teaching courses, presenting papers, serving
on and co-chairing many conference program committees, serving
on the ACM SIGGRAPH Executive Committee and serving as Ed-
itor in Chief for IEEE Transactions on Visualization and Computer
Graphics. Ebert is also editor and co-author of the seminal text on
procedural techniques in computer graphics, Texturing and Model-
ing: A Procedural Approach, whose third edition was published in
December 2003.

Don Stredney is research scientist for Biomedical Applications
and Director of the Interface Lab at OSC (Ohio Supercomputer
Center). In addition, Don is a member of the Experimental Thera-
peutics Program at the Comprehensive Cancer Center, and an As-
sociate Member of the Head and Neck Oncology Program at the
Arthur G. James Cancer Hospital and Solove Research Institute in
Columbus, Ohio. Dons research involves the exploration of high
performance computing and the application of advanced interface
technology for the development of more intuitive methods for in-
teraction with large and complex multimodal data sets. His re-
search interests lie in theories of representation, specifically the rep-
resentation and interaction with synthesized biomedical phenom-
ena for clinical and biomedical research and education. Don is
co-recipient of the Smithsonian Institute/Computerworld 1996 In-
formation Technology Leadership Award sponsored by Cray Re-
search Inc. for the design and implementation of a computer sim-
ulation environment for training residents in the delivery of re-
gional anesthesia techniques. Don currently has funded projects
through NIDCD, NIOSH, NSF and DOE/ASCI. In addition, Don
has been an investigator on projects from the National Institutes
of Health/National Library of Medicine, the National Institute for
Drug Addiction, Department of Defense, Medical Army Material



Command, Department of Energy, Lockheed Martin, the National
Institute for Disability and Rehabilitation Research, Harvard Medi-
cal School, Ameritech, the Committee on Institutional Cooperation
of the Big Ten and University of Chicago, and Cray Research Inc.
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® Anillustration is a picture with a communicative
intent

® Conveys complex structures or procedures in an
easily understandable way

® Uses abstraction to prevent visual overload — allows
to focus on the essential parts

® Abstraction is visualized through distinct stylistic
choices

! S. Bruckner ckner, E U
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Illustration

Abstraction

= Fundamental for creating an expressive illustration

= |ntroduces a distortion between visualization and
underlying model

= Different degrees of abstraction introduced at
different levels

= Task of an illustrator: find the necessary abstractions
for the intent of the illustration

5 S. Bruckner 4 1 'J
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Illustration

4 <insert your name here>I. Viola, S. Bruckner, E. 1
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Focus + Context Visualization

Basic idea:

= Important regions in great detail (focus)

= Global view with reduced detail (context)

= Dynamic integration . =

Rationale
= Zooming hides the context

= Human vision has both fovea and retina *

é E. Groller 3 TU
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Abstraction

= Different degrees of abstraction for different intents

schematic view of blood flow

zt-away view of anatomy

S. Bruckner
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Abstraction

® Goals of abstraction techniques
¢ Communicate shape and structure
¢ Emphasize or de-emphasize
¢ Prevent visual overload
¢ Suggest artificiality
¢ Ensure visibility of important structures
¢ Provide spatial context

® _As detailed as necessary — as simple as
possible”

4 S. Bruckner 6 Ty

High-Level Abstraction Techniques
= Deal with what should be visible and recognizeable
= Smart visibility

¢ Cutaways, breakaways, ghosting, exploded views, ...

! S. Bruckner

Schedule
Introduction

= 8:30 Eduard Grdéller, Katja Buihler:

Introduction of Speakers and Topics

Human Visual Perception and lllustrative Aspects of Art
= 9:05D. Ebert:

Illustrative and Non-Photorealistic Rendering

Illustrative Techniques in Visualization
= 9:30 Markus Hadwiger:
lllustrative Visualization for Isosurfaces and Volumes
= 10:00-10:30 Coffee break
= 11:00-12:00 Ivan Viola:
Smart Visibility in Visualization

5 1. Viola 10 @l
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Low-Level Abstraction Techniques

® Concerned with how different objects are presented
® Stylized depiction

¢ Silhouettes and contours, pen and ink, stippling,
hatching, ...

4 S. Bruckner 7 Ty

Illustrative Visualization

m |llustrative Visualization: computer supported
interactive and expressive visualizations through
abstractions as in traditional illustrations

[Bruckner 2005]

A nsert your name here>.vila, 5. Bruckner, € . TU
|00 coler [vigns

Schedule

Applications of Illustrative Techniques in Science and Medicine
= 12:00 Mario Costa Sousa:
Visualization Tools for the Science lllustrators: Evaluations and
Requirements
= 12:30-13:45 Lunch
= 14:15 David Ebert:
lllustration Inspired Flow Visualization
Interactive Medical lllustration System for Surgical Simulation
and Education
= 15:05 Don Stredney:
Visualization: From lllustrator’'s Perspective
= 15:45-16:15 Coffee Break
= 16:15 Bernhard Preim:
Case Studies for Surgical Planning using lllustrative Visualization

@ @Np

Discussion and Closing Remarks
= 17:15 All
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Human Visual Perception
and lllustrative Aspects of Art

11



Human Visual Perception and
lllustrative Aspects of Art

Eduard Groller! and Katja Buihler?

linstitute of Computer Graphics and Algorithms,

Vienna University of Technology

2VRVis Research Center, Vienna

v rivis

Media, Elements and
Perceptual Aspects

é Eduard Groller and Katja Biiher

i)

Part 1 - Drawings

Transferring Instruments
= Pens

¢ Reed, Birdfeather, Metal,
Technical Pens

® Brushes

Support
4 Stone, Bone, Metal, ....

# Papyrus, Parchment,
Wood,...

¢ Paper, Cardboard

Media — Transferring Instruments

g Eduard Groller and Katja Biher Vrivis
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Overview

= Part 1: Drawings
¢ Media
¢ Elements
¢ Perceptual Aspects

= Part 2: Scientific lllustrations
¢ Development of Scientific lllustrations
¢ Towards interactive 3D illustrations....

4-, Eduard Gréller and Katja Biiher Vrivis

® Friable media:

¢ Pencils, Graphite sticks
¢ Charcoal, Chalk

= Pigments
4 Ink
¢ Carbon dust
4 Aquarell, Gouache, ....

Eugene Delacroix; Sudy for “The Death o
28 Pastel wih chalk over wash on paper: At Insifute of
Chicago. (Webiuseur

4 Eduard Groller and Katja Biiher
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Media - Reproduction Techniques

B Basic techniques (one color)
¢ Relief printing
¢ Gravure / engraving

® Colored illustrations

¢ Hand coloring, printing multiple
layers

lustration, Berengario da Carpi, Jacopo. Isagogae

breues, perlucidae ac uberrimae, in anatomiam
mmuni medicorum acadenia

usitatam. Woodeut, Bolongna 1523, NLM

B Modern techniques
¢ Photography

! 4 Modern digital imaging/printing
o Eduard Groéller and Katja Biiher

v rivis




Media - Summary

The combination of support, media, and transferring
instrument

¢ highly influences the character of the final drawing
¢ has to be appropriate to get best possible results

!m Eduard Gréller and Katja Bither Vrivis

Elements — Points and Lines

® Basic elements of all
drawings

. . . Calmness Y
u Visual effect is defined
by size, position, and
environment.
Tension [ ]

Curved

%QLJ

Lightness
Density

Line

Johann Adam Kuimus.
Kalai shinsho. 1774,

vrivis

Eduard Gréller and Katja Biiher
i) .

Elements - Internal Contours

= Render the internal structure (of
the visible surface) of the object
= Internal contours strengthen the
outline

u Elements

4 single lines for internal
contours

¢ structuring compounds of
lines

# shadow

! Eduard Groller and Katja Biiher

-
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Elements of Drawings

Points and Lines
Contours

Light and Shadow
Perspective
lllusion and Gestalt

Johann Adam Kulmus, Kaltaishinsho. 1774, NLM

oo Eduard Groller and Katja Biher
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Elements — Contour Lines

= A contour can be
¢ aclosed line
¢ anopen line
# line fragments
¢ collection of points

= Nature does not know lines
4 Contours are an abstract concept !

= A contour describes a form that can be
recognized as a symbol for a specific
object

4 Eduard Groller and Katja Biiher
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Elements - Light and Shadow

® Shadow and light create illusion of
space!

Techniques:

® Hatching and Stippling
= Blending

= Erasing (for highlights)
= Hybrid techniques

elevato soido,
1498, (SSM)

Johann Adam Kulmus, Kaitai
shinsho. 1774, NLM

!m Eduard Groller and Katja Biiher
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Elements — Space and Perspective

= Creating space:
¢ arrangement of lines or contours

<<

# orientation and size of objects

(DO

4 constructed perspective

! Eduard Groller and Katja Biher

raitans de geomete, perspecive. archiecture et fortfication,
Amsterdam, chez Jan Janssen, 1662, av. 22 (MSS)

vrivis

Gestalt Theory - Rule of Simplicity

Simplest things will be
perceived first.

= Simplifying / leaving away
makes forms clearer

® Too much details impede
the direct perception of the
essential form

é Eduard Groller and Katja Biiher
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Part 2: Scientific lllustrations

Leonardo da vinc (su disegno ). Corpo oo a
1458, Acquerelo, (SSM)

Nikolaus Joseph Freiner von

uuuuuuu 17811793 (MG8)

Peter Chi

! Eduard Groller and Katja Biiher
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lllusion and Gestalt Theory

. ; N EEEN
— EEEN
R ‘ ’ ====

Hermann Grid lllusion

r )
-

Simultaneous Contrast

Kanizsa lllusion

S

Ebbinghaus lilusion

“The whole is more than the sum of its parts”

Peter Kaiser, The Joy of Visual Percepton, Oriine Book.
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Overview

= Part 1: Drawings
¢ Media
¢ Elements
¢ Perceptual Aspects

u Part 2: Scientific lllustrations
¢ Development of Scientific Illlustrations
¢ Towards interactive 3D illustrations....

4 Eduard Groller and Katja Biiher
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Scientific lllustrations - Purpose

Observation

® |nduction

Methods

Classification

= Concepts

!m Eduard Gréller and Katja Biiher VTrivis




Influences on Scientific lllustrations

= Art
¢ Available material
4 Common art styles
# Printing/reproduction techniques

4 Till 19th century "universal scientist' who has been
very often also artist

® Cultural background
4 Religion
4 Philosophy
= Technical / Scientific developments
4 Perspective
# Perception of reality

! Eduard Groller and Katja Biher

vrivis

Renaissance and Enlightenment was caian cenu

»Discovery“ of perspective

Systematic investigation of visual
system by Leonardo (lItaly), Durer
(Nurnberg), Descartes (Paris),...

Key technique for scientific
lllustrations!

Perspective drawing allowed more
realism and exactness

é Eduard Groller and Katja Biiher

i)

Leonardo da vinci (GFMER)

vrivis

Medical Images — First Printed Books

= First illustrated PRINTED medical
book by Johannes de Ketham
Fasciculus medicinae published in
Venice 1491

= First printed illustrated anatomy
book by Vesalius “De Humani
Corporis Fabrica” 1543

Fasiculo de medicina, 1494,
National Library of Medicine.

Renaissance and Enlightenment (1430- early18th century)

! Eduard Groller and Katja Biiher

v rivis
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Medical lllustrations - Historical Development

4 Eduard Groller and Katja Biher

vrivis

Medical Images - da Vinci ~1510

= Restrictions for dissection of the
human body are ignored by Leonardo
and others

Renaissance and Enlightenment (1430- early18th century)

Al mages by Leonardo Da Vinci, Downloaded at GFMER

@m Eduard Groller and Katja Buher Vrivis

Medical Images — Mixing Art and Science

= Mixture of art and scientific
illustration:
4 Subjective interpretation

¢ Anatomical drawings tell
stories

Tabulae sceet
1729 (ML) Rome, 1560.
L)

Renaissance and Enlightenment (1430- early18th century)

Vol.3
! Amsterdam, 1744. Etching with engraving. (NLM - National Library of Medicine.)
g Eduard Groller and Katja Biher
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Medical Images — Rendering Styles

m “Multi-layered lllustrations” by
Johann Remmelin

ohann Remmeln; Catopirum Microscopicum
1613, Wardi Libary

Renaissance and Enlightenment (1430- early18th century)

!m Eduard Gréller and Katja Bither Vrivis

Medical Images - Abstraction

= Focus and Context by Albinus

1740, N0

Eduard Gréller and Katja Biiher
i) .

= Best “classical” anatomic/medical illustrations still
handmade
= Style has not changed much during last 250 years...

= Application of computers for illustrations
¢ Impersonalization and mechanization of
illustrations

u BUT they allow:
4 3D visualization, interaction, animation

4 Combination of traditional techniques with modern
media and modern imaging techniques

# Better visualization of complex behavior e.g. blood
flow, metabolism, surgical interventions

!m Eduard Groller and Katja Biiher

v rivis

Medical lllustrations Today
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18th+19th Century - Understanding the World

The non-living world

¢ Electricity, Light, Magnetism,
Chemistry,.....

+ Images of experiments and visualization
of concepts gains more and more
importance

The living world
¢ Charles Darwin - Evolution theory

4 Carl von Linné - First classification
system for living things

£ L. Trouvelot Group of sun spots and veed spots.
‘Observed on June 176 1875 at 7 h. 30 m.The Trowelot
‘asronomical drawings: Ats. (1681-1882) (NYPL)

Scientific images are characterized by
objectivity, realism and system

4-, Eduard Groller and Katja Biher

Dominique Francois Arago, Plate showing cells,
1800184, Walles Manuscrpt Colecton

vrivis

day: Vis. Challenges

= Explosion of Scientific Knowledge
- Making again the invisible visible:
# Structures on atomic level
@ Living structures
¢ 3D structures
= New imaging, data acquisiton, and recording
techniques
¢ Photography, Film,...
¢ X-ray, CT, MRI
¢ Electron microscope.....
¢ Ultrasound,...

® Simulation of phenomena using computers

Eduard Gréller and Katja Biiher
_—m .

Towards Interactive 3D lllus

= High quality ,hand made* illustrations are
precise and effective.
= New imaging modalities provide
¢ spatial (and temporal) reconstruction of
organic structures
¢ multidimensional information (e.g., soft
tissue, metabolism, brain activities, ...)
® Visualization of multi-dimensional, multi-
layered information is difficult using traditional
2D techniques
= Next parts of tutorial:
Computer Aided lllustrative Visualization

!m Eduard Gréller and Katja Biiher VTrivis




lllustrative and Non-Photorealistic Rendering

17



Hustrative and
Non-Photorealistic Rendering

1y

David S.Ebert

Electrical & Computer Engineering
Purdue University
ebertd@purdue.edu

Non-Photorealistic Rendering

(NPR)

+ Images are judged by how effectively they
communicate

« Involves stylization and communication, usually
driven by human perception

» Knowledge and techniques long used by artists and
illustrators

» Emphasis on specific features of a scene, exposing
subtle attributes, omitting extraneous information

» Brings together art and science

Scientific lllustrations...

Often highly representational

Might or might not be visually realistic
Main purpose:

» Communicate information and not necessarily look
“‘real”

Differs from photorealism and other
representational genres

©H
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Traditionally...

Imagery generated by illustrators has been
used to provide information that may not
be readily apparent in photographs or real
life.

Non-Photorealistic Rendering (NPR)

+ Similar goal using computer graphics

» Very poor choice of name — negative definition

Definitions and Goals

lllustrations: Interpretations of visual
information expressed in a particular
medium.

Goals of NPR:

+ Enable interpretive and expressive rendering in
digital media

« Effectively communicate information to the viewer

’'S

Common NPR / Illustration
Techniques

Point and line-based

- Stippling

» Hatching

 Silhouettes
lllumination-based

» NPR lighting and tone shading

4




Stippling

Stipple — (stipal) -
To draw, engrave
or paint in dots or
short strokes

Illustrative Interactive Stipple
Rendering

Luetal., IEEE TVCG 2003

Works for both volumes and surfaces

The Stipple Volume Renderer

Initial Nomalized voxel data
Processing Voxel positions
St Fiple Nomalized gradient
i .
Generation magnitudes
I— Gradient directions
Z'te?‘:t_" Ve An edge field: generated by
endering p
LoG with the voxel data
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Two Approaches

Object Space

= Determine stipples to render each geometric primitive
(triangle, voxel, etc.)

Image Space
» Compute image
» Determine grey level values

« Generate new image with points using a Poisson
distribution

Stipple Drawing

Advantages
» Not limited by texture memory size

 Quick interaction with transfer functions and
parameters

Points can be used for quick preview and
interaction with volume datasets

The Stipple Volume Renderer

Initial Stipple drawing
Processing
|
Stipple
Generation

—
Interactive
Rendering 7




Stipple Drawing Feature Enhancements

Pre-generate list - 2 e : @ o F

of stipples & : i h

Ioca;le)erss } # g( ’:NQ @5y i IR

=~ - P o T g o
[ LEEEl ]

Foreach Voxe,/pOIy R l Stipple list l Resolution Equndan/& ’ Distance ’ Interior ‘ ’ Light ‘
calculate number to  Pogitions J\ . ‘ \—J‘ S : ‘
draw based on: ; f| I AT | : i

envifonment for each ' ! ' ' ' ‘
enhancements frame N r‘nax 'ﬁr Ty fs Tn T Tl

Draw points INENESNEENAN

‘ ‘ #Stipples to be drawn: Ni = Nmax AHT"
Resolution Enhancement Distance Enhancement
For each frame:

Maximum density for

the volume position
For each voxel:

Maximum density for

Current VOXeI z: voxel position in the volume

D+ d! | a: half valid volume length <
= Dl 0, {\ kae: degree of the feature
Leg ‘ Engine block

Light Enhancement

‘ Without
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The Stipple Volume Renderer

According to light direction According to view direction - -
Initial —oI Stipple drawing
Back facing Back facing .
Front facing 0 ***N&WV Front facing Process ; ‘N \
-1 (v l Segr
Aneurysm Stipple i :(

Generation
H: ilhouette curve:

Interactive | |
Rendering




Silhouette Curves

(S

R

‘ _ Without

Polygonal Results

Object Space Hatching
Computer-Generated Pen-and-Ink lllustration
(Winkenbach and D. H. Salesin -SIGGRAPH 94)
Apply hatching patterns directly to the 3D geometry
Introduced the concept of stroke textures

« Allow resolution dependent rendering.
Emphasizes tone and texture

+ Preserved across resolutions

Ensures shadowed areas are shaded consistently
with light position, surface orientation, ...

Hatching

Hatch — v. — (hdch) — To
shade by drawing or
etching fine parallel or
crossed lines

Prioritized Stroke Textures

Precompute a texture covered by many
strokes

To render

« Use several textures, each with
an associated priority

» Render from high to low priority
until the appropriate level of
grey is achieved

H

21




Results

Frank Lloyd Wright’s “Robie House”

Roughly consists of ~1000 polygons

Target Images and Direction
Fields

Grey-scale target image

+ Allows interactively changing the shading (tone)
Direction field

* Interactively modifiable

» Used to apply the hatching texture

Real-Time Hatching
Praun, Hoppe, et al.

Applies a hatching pattern in object-space
using Tonal Art Maps (TAMs) and lapped
textures

Uses multi-texturing graphics hardware

+ Smoothly blends several hatching image textures with
several different stroke densities for shading

r'S
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Image-Based Hatching

Salisbury et al. SIGGRAPH ‘97

Hatching patterns are placed on image using
orientable textures

User interactively edits direction field
superimposed on a grey-scale image and draws a
few sample strokes

Align the direction field with the curvatures and
orientations of the object

+ Hatching appears to be attached to the object

‘Vo geometric information required

Some Results

Results




Silhouettes

An “outline” or sketch of the object
* (a.k.a. contour, edge line)

Used extensively in art and illustration, the outline
is an important shape descriptor

Silhouette Approach Classification
Image-space vs. Object-space
Polygonal vs. Smooth

Surfaces vs. Volumes

Software vs. Hardware

Polygonal Mesh:
Definition of Silhouette

VA N

\ Front-facing polygon \ \ Back-facing polygon \

A silhouette edge is an edge adjacent to one
front-facing and one back-facing polygon

Silhouette Silhouette
{ (front-facing) (back-facing)

23

Silhouette word etymology

Etienne de Silhouette (1709 — 1767)
» Had an art hobby:

— Drawing/cutting a human portrait in profile, in black
(using shadow as a reference)

Image-based Approaches

[Herzmann98]
Render depth map. Render normal map
Apply edge detection Apply edge detection
iy % T
n {3 &I
' o) o

Smooth Surface: Definition of
silhouette

Silhouette and contour curves are the 2D

projection of points on the 3D surface where the

direction of the surface normal is orthogonal

to the line of sight [Interrante95, Herzmann98]

« Silhouette curves form a closed outline around the
projection

» Contour curves may be disjoint and can fall within
the projective boundary

P




Surface Contour

Effect is view-dependent
Main term - (N, V) dot product (normalized)

Contour area — where (N,V) is close to 0

Silhouettes In Volumes

Surface technique is extendable to volumes
[Ebert, Rheingans 2000]

» Uses volume gradient direction to approximate
surface normal

» Uses volume gradient magnitude to detect
boundaries

+ Modifies sample color and/or opacity to achieve
different effects

NPR Lighting

Akers-03

Martin-01

Sousa ‘04

Hamel-00

Slide courtesy of Mario Sousa Gooch 98,99
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Surface Contour

In practice, a threshold T is set,
corresponding to contour thickness

Volume Silhouette Example

Bone surface is darkened in silhouette
regions, emphasizing the structure
without illumination

Skin surface is transparent in non-silhouette
regions, removing visual obstruction while
providing foot shape cues

Tone Shading

Tones vary, but not luminance

Clearly shows highlights and edge lines

N

Green to Gray (tone)

Courtesy of Amy Gooch




Model Shaded using Tones

Courtesy of

Amy Gooch
Tone Shading on a
Gray Model
Courtesy of
Amy Gooch

Cool to warm shading

Gooch et al. 1998
4

25

Adding Temperature Shading

Warm to Cool Hue Shift

Depth Cue: warm colors advance while cool colors recede

.

Courtesy of Amy Gooch

Phong Shading vs.
Tone Shading

= Gooch et al., ACM Siggraph 1998

Volumetric Phong/Tone Shading

Conveys shape by
giving surfaces facing
the light source “warm”
colors, while other
surfaces get “cooler”
colors




lllustrative Visualization of Isosurfaces
and Volumes
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Tutorial Notes: lllustrative Visualization of Isosurfaces and Volumes

Markus Hadwiger*
VRVis Research Center
Vienna, Austria

Figure 1: lllustrating the shape of an isosurface of a three-dimensional distance field with curvature color coding (left), and drawing shape
cues such as ridge and valley lines and contours on an isosurface of a CT scan (center) and another distance field (right). There is no explicit
geometry here. All isosurfaces are rendered directly from the underlying volumetric representation. Here, GPU ray-casting [8] has been used.

ABSTRACT

This part of the tutorial on [llustrative Visualization describes visu-
alization techniques for depicting isosurfaces from volumes without
extracting explicit geometry, and full volume rendering with non-
photorealistic styles for different embedded objects. We start by
describing how isosurfaces can be shaded based on differential sur-
face properties that are computed on a per-pixel basis, employing
a deferred shading approach. This information can then be used
for depicting a variety of different shape cues such as color-coding
implicit surface curvature and rendering ridge and valley lines. We
illustrate a GPU-based rendering pipeline for high-quality render-
ing of isosurfaces with real-time curvature computation and shad-
ing. After describing surface-based illustration styles we continue
with full volume rendering. We show that segmentation informa-
tion is an especially powerful tool for depicting the objects con-
tained in medical data sets in varying styles. A combination of
non-photorealistic styles with standard direct volume rendering is
a very effective means for separating focus from context objects or
regions. We describe the concept of two-level volume rendering
that integrates different rendering modes and compositing types by
using segmented data and per-object attributes.

1 ISOSURFACE ILLUSTRATION WITH DEFERRED SHADING

Many non-photorealistic volume rendering techniques operate on
isosurfaces of volumetric data. Although direct volume rendering
as well as other techniques aiming to depict an entire volume in a
single image are very important and popular, rendering isosurfaces
corresponding to particular structures of interest, or more precisely,
their boundaries, play a very important role in the field of volume
rendering. Isosurfaces naturally allow depicting their structure with
surface-based shape cues such as ridge and valley lines and con-
tours, such as the distance field isosurface shown in Figure 1.
There are two major approaches for rendering isosurfaces of vol-
ume data. First, an explicit triangle mesh corresponding to a given

*msh@vrvis.at
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iso-value can be extracted prior to rendering, e.g., using marching
cubes [23] or one of its variants [17]. Second, ray-isosurface inter-
sections can be determined via ray casting [1, 22]. Naturally, gen-
eral NPR techniques for rendering surfaces can easily be applied to
rendering isosurfaces of volume data.

In hardware-accelerated volume rendering, isosurfaces have tra-
ditionally been rendered by slicing the volume in back-to-front or-
der and exploiting the hardware alpha test in order to reject frag-
ments not corresponding to the isosurface [34]. The concept of pre-
integration can also be applied to isosurface rendering, which yields
results of high quality even with low sampling rates [5]. Recently,
GPU-based ray casting approaches have been developed [18, 28],
which can also be used to determine ray-isosurface intersections.

The following sections illustrate a high-quality rendering
pipeline for direct rendering of isosurfaces by determining ray-
isosurface intersections and subsequent deferred shading of the cor-
responding pixels. The input to the deferred shading stages is a
floating point image of ray-isosurface intersection positions, which
is obtained from either slicing the volume [7], illustrated in figure 4,
or first hit ray casting that stores hit positions into the target buffer
using a GPU ray casting method [8].

1.1 Deferred Shading

In standard rendering pipelines, shading equations are often eval-
uated for pixels that are entirely invisible or whose contribution to
the final image is negligible. With the shading equations used in
real-time rendering becoming more and more complex, avoiding
these computations for invisible pixels becomes an important goal.

A very powerful concept that allows to compute shading only for
actually visible pixels is the notion of deferred shading [3, 21]. De-
ferred shading computations are usually driven by one or more in-
put images that contain all the information that is necessary for per-
forming the final shading of the corresponding pixels. Especially
in the context of non-photorealistic rendering, these input images
are often also called G-buffers [29]. The major advantage of the
concept of deferred computations is that it reduces their complexity
from being proportional to object space, e.g., the number of vox-



Figure 2: Example image space rendering passes of deferred isosurface shading. Surface properties such as (a) the gradient (here color-coded
in RGB), (b) principal curvature magnitudes (here: ki), and (c) principal curvature directions can be reconstructed. These properties can be

used in shading passes, e.g., (d) Blinn-Phong shading, (e) color coding of curvature measures (here: ,/k?+«? [15]), and (f) advection of flow

along principal curvature directions.

els in a volume, to the complexity of image space, i.e., the number
of pixels in the final output image. Naturally, these computations
are not limited to shading equations per se, but can also include the
derivation of additional information that is only needed for visible
pixels and may be required as input for shading, such as differential
surface properties.

In this section, we describe deferred shading computations for
rendering isosurfaces of volumetric data. The computations that
are deferred to image space are not limited to actual shading, but
also include the derivation of differential implicit surface proper-
ties such as the gradient (first order partial derivatives), the Hessian
matrix (second order partial derivatives), and principal curvature
information.

Figure 5 illustrates a pipeline for deferred shading of isosurfaces
of volume data, and figure 2 shows example images corresponding
to the output of specific image space rendering passes. The input
to the pipeline is a single floating point image storing ray-surface
intersection positions of the viewing rays and the isosurface. This
image is obtained via either slicing the volume, or first hit ray cast-
ing, as outlined above and illustrated in figure 4.

From this intersection position image, differential isosurface
properties such as the gradient and additional partial derivatives
such as the Hessian matrix can be computed first. This allows shad-
ing with high-quality gradients, as well as computation of high-
quality principal curvature magnitude and direction information.
Sections 1.2 and 1.3 describe high-quality reconstruction of differ-
ential isosurface properties.

In the final actual shading pass, differential surface properties
can be used for shading computations such as Blinn-Phong shading,
color mapping of curvature magnitudes, and flow advection along
curvature directions, as well as applying a solid texture onto the
isosurface.

Shading from gradient image

The simplest shading equations depend on the normal vector of the
isosurface, i.e., its normalized gradient. The normal vector can for
example be used to compute Blinn-Phong shading, and reflection
and refraction mapping that index an environment map with vectors
computed from the view vector and the normal vector.

Solid texturing

The initial position image that contains ray-isosurface intersection
positions can be used for straight-forward application of a solid tex-
ture onto an isosurface. Parameterization is simply done by specify-
ing the transformation of object space to texture space coordinates,
e.g., via an affine transformation. For solid texturing, real-time tri-
cubic filtering can be used instead of tri-linear interpolation in order
to achieve high-quality results.
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1.2 Deferred Gradient Reconstruction

The most important differential property of the isosurface that
needs to be reconstructed is the gradient of the underlying scalar

field f:
v (af af af\" .
g=V/= 3x73y7z9z) W
The gradient can then be used as implicit surface normal for shading
and curvature computations.

The surface normal is the normalized gradient of the volume, or
its negative, depending on the notion of being inside/outside of the
object that is bounded by the isosurface: n = —g/|g|. The calcu-
lated gradient can be stored in a single RGB floating point image,
see figure 2(a).

Hardware-accelerated high-quality filtering can be used for re-
construction of high-quality gradients by convolving the original
scalar volume three times with the first derivative of a reconstruc-
tion kernel, e.g., the derived cubic B-spline kernel that is shown in
figure 3(a).

The quality difference between cubic filtering and linear inter-
polation is even more apparent in gradient reconstruction than it
is in value reconstruction. Figure 6 shows a comparison of differ-
ent combinations of filters for value and gradient reconstruction,
i.e., linear interpolation and cubic reconstruction with a cubic B-
spline kernel. Figure 7 compares linear and cubic (B-spline) recon-
struction using reflection mapping and a line pattern environment
map. Reconstruction with the cubic B-spline achieves results with
C? continuity.

1.3 Other Differential Properties

In addition to the gradient of the scalar volume, i.e., its first partial
derivatives, further differential properties can be reconstructed in
additional deferred shading passes.

Figure 3: The first order (a) and second order (b) derivatives of the
cubic B-spline filter for direct high-quality reconstruction of deriva-
tives via convolution.



Figure 4: Slicing a volume in order to determine an intersection image of ray-isosurface intersections for deferred shading of an isosurface in

subsequent image space rendering passes.

Figure 5: Deferred shading computations for an isosurface given as a floating point image of ray-surface intersection positions. First, differential
properties such as the gradient and additional partial derivatives can be computed. These derivatives also allow to compute principal curvature

information on-the-fly.

In the final shading pass, the obtained properties can be used for high-quality shading computations.

All of these

computations and shading operations have image space instead of object space complexity and are only performed for visible pixels.

For example, implicit principal curvature information can be
computed from the second order partial derivatives of the volume.
Curvature has many applications in surface investigation and ren-
dering, e.g., non-photorealistic rendering equations incorporating
curvature magnitudes in order to detect surface structures such as
ridge and valley lines, or rendering silhouettes of constant screen
space thickness.

Second order partial derivatives: the Hessian

The Hessian matrix H is comprised of all second order partial
derivatives of the scalar volume f:

P2p oy g
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Due to symmetry, only six unique components need to be calcu-
lated, which can be stored in two RGB floating point images.

High-quality second order partial derivatives can be computed
by convolving the scalar volume with a combination of first and
second order derivatives of the cubic B-spline kernel, for example,
which is illustrated in figure 3.
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Principal curvature magnitudes

The first and second principal curvature magnitudes (k1, k») of the
isosurface can be estimated directly from the gradient g and the
Hessian H [15], whereby tri-cubic filtering in general yields high-
quality results. This can be done in a single rendering pass, which
uses the three partial derivative RGB floating point images gener-
ated by previous pipeline stages as input textures. It amounts to a
moderate number of vector and matrix multiplications and solving
a quadratic polynomial.

The result is a floating point image storing (kj, k»), which can
then be used in the following passes for shading and optionally cal-
culating curvature directions. See figure 2(b).

Principal curvature directions

The principal curvature magnitudes are the eigenvalues of a 2x2
eigensystem in the tangent plane specified by the normal vector,
which can be solved in the next rendering pass for the correspond-
ing eigenvectors, i.e., the 1D subspaces of principal curvature direc-
tions. Representative vectors for either the first or second principal
directions can be computed in a single rendering pass.

The result is a floating point image storing principal curvature
direction vectors. See Figure 2(c).



Figure 6: Linear and cubic filtering for value and gradient reconstruction on a torus: (a) both value and gradient are linear; (b) value is linear
and gradient cubic; (c) both value and gradient are cubic. For cubic filtering, a cubic B-spline kernel has been used.

Figure 7: Comparing linear and cubic gradient reconstruction with a cubic B-spline filter using reflection lines. The left two images are with

linear, the right two with cubic filtering.

Filter kernel considerations

All curvature reconstructions in this chapter employ a cubic B-
spline filter kernel and its derivatives. It has been shown that cu-
bic filters are the lowest order reconstruction kernels for obtaining
high-quality curvature estimates. They also perform very well when
compared with filters of even higher order [15].

The B-Spline filter is a good choice for curvature reconstruction
because it is the only fourth order BC-spline filter which is both
accurate and continuous for first and second derivatives [26, 15].
Hence it is the only filter of this class which reconstructs continuous
curvature estimates. Cubic B-spline filters can be implemented very
efficiently on current GPUs [30].

However, although B-spline filters produce smooth and visually
pleasing results, they might be inappropriate in some applications
where data interpolation is required [25]. Using a combination of
the first and second derivatives of the cubic B-spline for derivative
reconstruction, and a Catmull-Rom spline for value reconstruction
is a viable alternative that avoids smoothing the original data [15].

1.4 Rendering from Implicit Curvature

Computing implicit surface curvature is a powerful tool for isosur-
face investigation and non-photorealistic rendering of isosurfaces.

When differential isosurface properties have been computed in
preceding deferred shading passes (see section 1.3), this informa-
tion can be used for performing a variety of mappings to shaded
images in a final shading pass.

Curvature-based transfer functions

Principal curvature magnitudes can be visualized on an isosurface
by mapping them to colors via one-dimensional or two-dimensional
transfer function lookup textures.

One-dimensional curvature transfer functions. Simple color
mappings of first or second principal curvature magnitude via 1D
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transfer function lookup tables can easily be computed during shad-
ing. The same approach can be used to depict additional curvature
measures directly derived from the principal magnitudes, such as
mean curvature (k] + k»)/2 or Gaussian curvature kjk». See fig-
ures 10(left), 13(top, left), and 15(top, left) for examples.

Two-dimensional curvature transfer functions. Transfer func-
tions in the 2D domain of both principal curvature magnitudes
(k1, k) are especially powerful, since color specification in this
domain allows to highlight different structures on the surface [12],
including ridge and valley lines [13, 15]. Curvature magnitude in-
formation can also be used to implement silhouette outlining with
constant screen space thickness [15]. See figures 10, 11, 13, 14,
and 15 for examples. Figure 8 illustrates 2D transfer functions in
the domain of curvature measures for ridge and valley lines (left),
and constant silhouette thickness (right).

Figure 8: Two-dimensional transfer functions in curvature space.
(left) Ridge and valley lines in (k, k) domain [15]; (right) contour
thickness control [15].



Curvature-aligned flow advection

Direct mappings of principle curvature directions to RGB colors are
hard to interpret, see figure 2(c), for example.

However, principal curvature directions on an isosurface can be
visualized using image-based flow visualization [33]. In particular,
flow can be advected on the surface entirely in image space [19, 20].
These methods can easily be used in real-time, complementing the
capability to generate high-quality curvature information on-the-fly,
which also yields the underlying, potentially unsteady, "flow” field
in real-time. See figure 2(f). In this case, it is natural to perform
per-pixel advection guided by the floating point image containing
principal direction vectors instead of warping mesh vertex or tex-
ture coordinates.

A problem with advecting flow along curvature directions is that
their orientation is not uniquely defined and thus seams in the flow
cannot be entirely avoided [33].

See figures 9 and 11(top, left) for examples.

Figure 9: Changing the iso-value of a torus isosurface represented by
a signed distance field. Color is derived from maximum principal cur-
vature magnitude, and flow is advected in image space in maximum
principal curvature direction. All changes to the iso-value take effect
in real-time. Curvature directions constitute an unsteady flow field.
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Figure 10: Two examples of implicit curvature-based isosurface rendering. (left) CT scan (256x128x256) with color mapping from a 1D transfer

function depicting 1/K12+K22; (right) CT scan (256x256x333) with contours, ridges and valleys, tone shading, and principal curvature-aligned
flow advection to generate a noise pattern on the surface.

Figure 11: Curvature-based NPR. (top, left) Contours, curvature magnitude colors, and flow in curvature direction; (top, right) tone shading
and contours; (bottom, left) contours, ridges, and valleys; (bottom, right) flow in curvature direction.
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Figure 12: CT scan (512x512x333) with tone shading and curvature-controlled contours with ridge and valley lines specified in the (ki,k»)
domain via a 2D transfer function.

Figure 13: Dragon distance field (128x128x128) with colors from curvature magnitude (top, left); with Phong shading (top, right); with contours
(bottom, left); with ridge and valley lines (bottom, right).
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Figure 14: CT scan (256x256x333) with contours, ridges and valleys, tone shading, and image space flow advection to generate a noise pattern
on the surface.

Figure 15: Happy Buddha distance field (128x128x128) with colors from curvature magnitude (top, left); only ridge and valley lines (top, right);
with contours (bottom, left); with contours, and ridge and valley lines (bottom, right).
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2 VOLUME RENDERING OF SEGMENTED DATA

One of the most important goals in volume rendering, especially
when dealing with medical data, is to be able to visually separate
and selectively enable specific objects of interest contained in a sin-
gle volumetric data set.

A very powerful approach to facilitate the perception of individ-
ual objects is to create explicit object membership information via
segmentation [32]. The process of segmentation determines a set of
voxels that belong to a given object of interest, usually in the form
of one or several segmentation masks. There are two major ways of
representing segmentation information in masks. First, each object
can be represented by a single binary segmentation mask, which
determines for each voxel whether it belongs to the given object or
not. Second, an object ID volume can specify segmentation infor-
mation for all objects in a single volume, where each voxel contains
the ID of the object it belongs to. These masks can then be used to
selectively render only some of the objects contained in a single
data set, or render different objects with different optical properties
such as transfer functions, for example. Volumes with object ID
tags are often also called fagged volumes [9].

Other approaches for achieving visual distinction of objects are
for example rendering multiple semi-transparent isosurfaces, or di-
rect volume rendering with an appropriate transfer function. In the
latter approach, multi-dimensional transfer functions [14, 16] have
proven to be especially powerful in facilitating the perception of
different objects. However, it is often the case that a single ren-
dering method or transfer function does not suffice in order to dis-
tinguish multiple objects of interest according to a user’s specific
needs, especially when spatial information needs to be taken into
account. Non-photorealistic volume rendering methods [2, 4, 24]
have also proven to be promising approaches for achieving better
perception of individual objects.

An especially powerful approach is to combine different non-
photorealistic and traditional volume rendering methods in a sin-
gle volume rendering. When segmentation information is available,
different objects can be rendered with individual per-object render-
ing modes, which allows to use specific modes for structures they
are well suited for, as well as separating focus from context. Even
further, different objects can be rendered with their own individ-
ual compositing mode, combining the contributions of all objects
with a single global compositing mode. This two-level approach to
object compositing can facilitate object perception very effectively
and is known as two-level volume rendering [10, 11].

Overview

Integrating segmentation information and multiple rendering
modes with different sets of parameters into a fast high-quality
volume renderer is not a trivial problem, especially in the case of
consumer hardware volume rendering, which tends to only be fast
when all or most voxels can be treated identically. On such hard-
ware, one would also like to use a single segmentation mask vol-
ume in order to use a minimal amount of texture memory. Graphics
hardware cannot easily interpolate between voxels belonging to dif-
ferent objects, however, and using the segmentation mask without
filtering gives rise to artifacts. Thus, one of the major obstacles
in such a scenario is filtering object boundaries in order to attain
high quality in conjunction with consistent fragment assignment
and without introducing non-existent object IDs due to interpola-
tion.

In this chapter, we show how segmented volumetric data sets
can be rendered efficiently and with high quality on current con-
sumer graphics hardware. The segmentation information for object
distinction can be used at multiple levels of sophistication, and we
describe how all of these different possibilities can be integrated
into a single coherent hardware volume rendering framework.
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First, different objects can be rendered with the same rendering
technique (e.g., DVR), but with different transfer functions. Sep-
arate per-object transfer functions can be applied in a single ren-
dering pass even when object boundaries are filtered during render-
ing. On an ATI Radeon 9700, up to eight transfer functions can be
folded into a single rendering pass with linear boundary filtering.
If boundaries are only point-sampled, e.g., during interaction, an
arbitrary number of transfer functions can be used in a single pass.
However, the number of transfer functions with boundary filtering
in a single pass is no conceptual limitation and increases trivially on
architectures that allow more instructions in the fragment shader.

Second, different objects can be rendered using different hard-
ware fragment shaders. This allows easy integration of methods
as diverse as non-photorealistic and direct volume rendering, for
instance. Although each distinct fragment shader requires a sep-
arate rendering pass, multiple objects using the same fragment
shader with different rendering parameters can effectively be com-
bined into a single pass. When multiple passes cannot be avoided,
the cost of individual passes is reduced drastically by executing
expensive fragment shaders only for those fragments active in a
given pass. These two properties allow highly interactive render-
ing of segmented data sets, since even for data sets with many
objects usually only a couple of different rendering modes are
employed. We have implemented direct volume rendering with
post-classification, pre-integrated classification [5], different shad-
ing modes, non-polygonal isosurfaces, and maximum intensity pro-

Figure 17: Segmented head and neck data set (256x256x333) with
eight different enabled objects — brain: tone shading; skin: contour
enhancement with clipping plane; eyes and spine: shaded DVR; skull,
teeth, and vertebrae: unshaded DVR; trachea: MIP.



Figure 16: Segmented hand data set (256x128x256) with three objects: skin, blood vessels, and bone. Two-level volume rendering integrates
different transfer functions, rendering and compositing modes: (left) all objects rendered with shaded DVR; the skin partially obscures the bone;
(center) skin rendered with non-photorealistic contour rendering and MIP compositing, bones rendered with DVR, vessels with tone shading;
(right) skin rendered with MIP, bones with tone shading, and vessels with shaded isosurfacing; the skin merely provides context.

jection. See figures 16 and 18 for example images. In addition to
non-photorealistic contour enhancement [2] (figure 16, center; fig-
ure 18, skull), we have also used a volumetric adaptation of tone
shading [6] (figure 16, right), which improves depth perception in
contrast to standard shading.

Finally, different objects can also be rendered with different
compositing modes, e.g., alpha blending and maximum intensity
projection (MIP), for their contribution to a given pixel. These
per-object compositing modes are object-local and can be speci-
fied independently for each object. The individual contributions of
different objects to a single pixel can be combined via a separate
global compositing mode. This two-level approach to object com-
positing [10, 11] has proven to be very useful in order to improve
perception of individual objects.

The major points of this chapter are:

e A systematic approach to minimizing both the number of ren-
dering passes and the performance cost of individual passes
when rendering segmented volume data with high quality on
current GPUs. Both filtering of object boundaries and the use
of different rendering parameters such as transfer functions do
not prevent using a single rendering pass for multiple objects.
Even so, each pass avoids execution of the corresponding po-
tentially expensive fragment shader for irrelevant fragments
by exploiting the early z-test. This reduces the performance
impact of the number of rendering passes drastically.

e An efficient method for mapping a single object ID volume
to and from a domain where filtering produces correct results
even when three or more objects are present in the volume.
The method is based on simple 1D texture lookups and able
to map and filter blocks of four objects simultaneously.

e An efficient object-order algorithm based on simple depth and
stencil buffer operations that achieves correct compositing of
objects with different per-object compositing modes and an
additional global compositing mode. The result is conceptu-
ally identical to being able to switch compositing modes for
any given group of samples along the ray for any given pixel.

2.1 Segmented Data Representation

For rendering purposes, we simply assume that in addition to the
usual data such as a density and an optional gradient volume, a
segmentation mask volume is also available. If embedded objects
are represented as separate masks, we combine all of these masks
into a single volume that contains a single object ID for each voxel
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in a pre-process. Hence we will also be calling this segmentation
mask volume the object ID volume. 1Ds are simply enumerated
consecutively starting with one, i.e., we do not assign individual
bits to specific objects. ID zero is reserved (see later sections).

The object ID volume consumes one byte per voxel and is ei-

Figure 18: Segmented head and neck data set (256x256x333) with
six different enabled objects. The skin and teeth are rendered as
MIP with different intensity ramps, the blood vessels and eyes are
rendered as shaded DVR, the skull uses contour rendering, and the
vertebrae use a gradient magnitude-weighted transfer function with
shaded DVR. A clipping plane has been applied to the skin object.



Figure 19: CT scan of a human hand (256x128x256) with three
segmented objects (skin, blood vessels, and bone structure). The
skin is rendered with contour enhancement, the vessels with shaded
DVR, and the bones with tone shading.

ther stored in its own 3D texture in the case of view-aligned slicing,
or in additional 2D slice textures for all three slice stacks in the
case of object-aligned slicing. With respect to resolution, we have
used the same resolution as the original volume data, but all of the
approaches we describe could easily be used for volume and seg-
mentation data of different resolutions.

2.2 Rendering Segmented Data

In order to render a segmented data set, we determine object mem-
bership of individual fragments by filtering object boundaries in the
hardware fragment shader (section 2.3). Object membership deter-
mines which transfer function, rendering, and compositing modes
should be used for a given fragment. See figure 19 for an exam-
ple of three segmented objects rendered with per-object rendering
modes and transfer functions.

We render the volume in a number of rendering passes that is ba-
sically independent of the number of contained objects. It most of
all depends on the required number of different hardware configura-
tions that cannot be changed during a single pass, i.e., the fragment
shader and compositing mode. Objects that can share a given con-
figuration can be rendered in a single pass. This also extends to the
application of multiple per-object transfer functions (section 2.3)
and thus the actual number of rendering passes is usually much
lower than the number of objects or transfer functions. It depends
on several major factors:

Enabled objects. If all the objects rendered in a given pass have
been disabled by the user, the entire rendering pass can be skipped.
If only some of the objects are disabled, the number of passes stays
the same, independent of the order of object IDs. Objects are dis-
abled by changing a single entry of a 1D lookup texture. Addi-
tionally, per-object clipping planes can be enabled. In this case, all
objects rendered in the same pass are clipped identically, however.

Rendering modes. The rendering mode, implemented as an ac-
tual hardware fragment shader, determines what and how volume
data is re-sampled and shaded. Since it cannot be changed during
a single rendering pass, another pass must be used if a different
fragment shader is required. However, many objects often use the
same basic rendering mode and thus fragment shader, e.g., DVR
and isosurfacing are usually used for a large number of objects.

Transfer functions. Much more often than the basic rendering
mode, a change of the transfer function is required. For instance,
all objects rendered with DVR usually have their own individual
transfer functions. In order to avoid an excessive number of ren-
dering passes due to simple transfer function changes, we apply
multiple transfer functions to different objects in a single rendering
pass while still retaining adequate filtering quality (section 2.3).

Compositing modes. Although usually considered a part of
the rendering mode, compositing is a totally separate operation in
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graphics hardware. Where the basic rendering mode is determined
by the fragment shader, the compositing mode is specified as blend
function and equation in OpenGL, for instance. It determines how
already shaded fragments are combined with pixels stored in the
frame buffer. Changing the compositing mode happens even more
infrequently than changing the basic rendering mode, e.g., alpha
blending is used in conjunction with both DVR and tone shading.

Different compositing modes per object also imply that the (con-
ceptual) ray corresponding to a single pixel must be able to combine
the contribution of these different modes (figure 26). Especially
in the context of texture-based hardware volume rendering, where
no actual rays exist and we want to obtain the same result with an
object-order approach instead, we have to use special care when
compositing. The contributions of individual objects to a given
pixel should not interfere with each other, and are combined with a
single global compositing mode.

In order to ensure correct compositing, we are using two ren-
der buffers and track the current compositing mode for each pixel.
Whenever the compositing mode changes for a given pixel, the al-
ready composited part is transferred from the local compositing
buffer into the global compositing buffer. Section 2.4 shows that
this can actually be done very efficiently without explicitly consid-
ering individual pixels, while still achieving the same compositing
behavior as a ray-oriented image-order approach, which is crucial
for achieving high quality. For faster rendering we allow falling
back to single-buffer compositing during interaction (figure 27).

The basic rendering loop

We will now outline the basic rendering loop that we are using for
each frame. Table 1 gives a high-level overview.

Although the user is dealing with individual objects, we automat-
ically collect all objects that can be processed in the same rendering
pass into an object set at the beginning of each frame. For each ob-
ject set, we generate an object set membership texture, which is a
1D lookup table that determines the objects belonging to the set. In
order to further distinguish different transfer functions in a single
object set, we also generate 1D transfer function assignment tex-
tures. Both of these types of textures are shown in figure 20 and
described in sections 2.2 and 2.3.

After this setup, the entire slice stack is rendered. Each slice
must be rendered for every object set containing an object that inter-
sects the slice, which is determined in a pre-process. In the case of
3D volume textures, all slices are always assumed to be intersected
by all objects, since they are allowed to cut through the volume at
arbitrary angles. If there is more than a single object set for the cur-
rent slice, we optionally render all object set IDs of the slice into

DetermineObjectSets();
CreateObjectSetMembershipTextures() ;
CreateTFAssignmentTextures();

FOR each slice DO
TransferLocalBufferIntoGlobalBuffer();
ClearTransferredPixelsInLocalBuffer();
RenderObjectIdDepthImageForEarlyZTest () ;
FOR each object set with an object in slice DO

SetupObjectSetFragmentRejection();
SetupObjectSetTFAssignment () ;
ActivateObjectSetFragmentShader () ;
ActivateObjectSetCompositingMode () ;
RenderSliceIntoLocalBuffer();

Table 1: The basic rendering loop that we are using. Object set mem-
bership can change every time an object’s rendering or compositing
mode is changed, or an object is enabled or disabled.



the depth buffer before rendering any actual slice data. This enables
us to exploit the early z-test during all subsequent passes for each
object set, see below.

We proceed by rendering actual slice data. Before a slice can
be rendered for an object set, the fragment shader and composit-
ing mode corresponding to this set must be activated. Using the
two types of textures mentioned above, the fragment shader filters
boundaries, rejects fragments not corresponding to the current pass,
and applies the correct transfer function.

In order to attain two compositing levels, slices are rendered into
a local buffer, as already outlined above. Before rendering the cur-
rent slice, those pixels where the local compositing mode differs
from the previous slice are transferred from the local into the global
buffer using the global compositing mode. After this transfer, the
transferred pixels are cleared in the local buffer to ensure correct
local compositing for subsequent pixels. In the case when only a
single compositing buffer is used for approximate compositing, the
local to global buffer transfer and clear are not executed.

Finally, if the global compositing buffer is separate from the
viewing window, it has to be transferred once after the entire vol-
ume has been rendered.

Early fragment culling via early z-test

On current graphics hardware, it is possible to avoid execution of
the fragment shader for fragments where the depth test fails as long
as the shader does not modify the depth value of the fragment. This
early z-test is crucial to improving performance when multiple ren-
dering passes have to be performed for each slice.

If the current slice’s object set IDs have been written into the
depth buffer before, see above, we reject fragments not belong-
ing to the current object set even before the corresponding frag-
ment shader is started. In order to do this, we use a depth test of
GL_EQUAL and configure the vertex shader to generate a constant
depth value for each fragment that exactly matches the current ob-
ject set ID. Figure 21 graphically illustrates the performance differ-
ence of using the early z-test as opposed to also shading voxels that
will be culled.

Excluding individual fragments from processing by an expensive
fragment shader via the early z-test is also crucial in the context of
GPU-based ray casting in order to be able to terminate rays individ-
ually [18].

Fragment shader operations

Most of the work in volume renderers for consumer graphics hard-
ware is done in the fragment shader, i.e., at the granularity of indi-

Figure 20: Object set membership textures (left; three 1D inten-
sity textures for three sets containing three, two, and one object,
respectively) contain a binary membership status for each object in
a set that can be used for filtering object IDs and culling fragments.
Transfer function assignment textures (right; one 1D RGBA texture
for distinction of four transfer functions) are used to filter four object
boundaries simultaneously and determine the corresponding transfer
function via a simple dot product.
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Figure 21: In order to render the bone structure shown on the left,
many voxels need to be culled. The early z-test allows to avoid
evaluating shading equations for culled voxels. If it is not employed,
performance will correspond to shading all voxels as shown on the
right.

vidual fragments and, ultimately, pixels. In contrast to approaches
using lookup tables, i.e., paletted textures, we are performing all
shading operations procedurally in the fragment shader. However,
we are most of all interested in the operations that are required for
rendering segmented data. The two basic operations in the frag-
ment shader with respect to the segmentation mask are fragment
rejection and per-fragment application of transfer functions:

Fragment rejection. Fragments corresponding to object IDs
that cannot be rendered in the current rendering pass, e.g., because
they need a different fragment shader or compositing mode, have to
be rejected. They, in turn, will be rendered in another pass, which
uses an appropriately adjusted rejection comparison.

For fragment rejection, we do not compare object IDs individu-
ally, but use 1D lookup textures that contain a binary membership
status for each object (figure 20, left). All objects that can be ren-
dered in the same pass belong to the same object set, and the cor-
responding object set membership texture contains ones at exactly
those texture coordinates corresponding to the IDs of these objects,
and zeros everywhere else. The re-generation of these textures at
the beginning of each frame, which is negligible in terms of per-
formance, also makes turning individual objects on and off trivial.
Exactly one object set membership texture is active for a given ren-
dering pass and makes the task of fragment rejection trivial if the
object ID volume is point-sampled.

When object IDs are filtered, it is also crucial to map individual
IDs to zero or one before actually filtering them. Details are given
in section 2.3, but basically we are using object set membership
textures to do a binary classification of input IDs to the filter, and
interpolate after this mapping. The result can then be mapped back
to zero or one for fragment rejection.

Per-fragment transfer function application. Since we apply
different transfer functions to multiple objects in a single rendering
pass, the transfer function must be applied to individual fragments
based on their density value and corresponding object ID. Instead of
sampling multiple one-dimensional transfer function textures, we
sample a single global two-dimensional transfer function texture
(figure 22). This texture is not only shared between all objects of
an object set, but also between all object sets. It is indexed with one
texture coordinate corresponding to the object ID, the other one to
the actual density.

Because we would like to filter linearly along the axis of the
actual transfer function, but use point-sampling along the axis of
object IDs, we store each transfer function twice at adjacent loca-
tions in order to guarantee point-sampling for IDs, while we are
using linear interpolation for the entire texture. We have applied
this scheme only to 1D transfer functions, but general 2D transfer
functions could also be implemented via 3D textures of just a few
layers in depth, i.e., the number of different transfer functions.



We are using an extended version of the pixel-resolution filter
that we employ for fragment rejection in order to determine which
of multiple transfer functions in the same rendering pass a fragment
should actually use. Basically, the fragment shader uses multiple
RGBA transfer function assignment textures (figure 20, right) for
both determining the transfer function and rejecting fragments, in-
stead of a single object set membership texture with only a single
color channel. Each one of these textures allows filtering the object
ID volume with respect to four object boundaries simultaneously.
A single lookup yields binary membership classification of a frag-
ment with respect to four objects. The resulting RGBA member-
ship vectors can then be interpolated directly. The main operation
for mapping back the result to an object ID is a simple dot product
with a constant vector of object IDs. If the result is the non-existent
object ID of zero, the fragment needs to be rejected. The details are
described in section 2.3.

This concept can be extended trivially to objects sharing transfer
functions by using transfer function IDs instead of object IDs. The
following two sections will now describe filtering of object bound-
aries at sub-voxel precision in more detail.

2.3 Boundary Filtering

One of the most crucial parts of rendering segmented volumes with
high quality is that the object boundaries must be calculated dur-
ing rendering at the pixel resolution of the output image, instead of
the voxel resolution of the segmentation volume. Figure 23 (left)
shows that simply point-sampling the object ID texture leads to ob-
ject boundaries that are easily discernible as individual voxels. That
is, simply retrieving the object ID for a given fragment from the seg-
mentation volume is trivial, but causes artifacts. Instead, the object
ID must be determined via filtering for each fragment individually,
thus achieving pixel-resolution boundaries.

Unfortunately, filtering of object boundaries cannot be done di-
rectly using the hardware-native linear interpolation, since direct
interpolation of numerical object IDs leads to incorrectly interpo-
lated intermediate values when more than two different objects are
present. When filtering object IDs, a threshold value s; must be
chosen that determines which object a given fragment belongs to,
which is essentially an iso-surfacing problem.

However, this cannot be done if three or more objects are con-
tained in the volume, which is illustrated in the top row of figure 24.
In that case, it is not possible to choose a single s; for the entire vol-
ume. The crucial observation to make in order to solve this problem
is that the segmentation volume must be filtered as a successive
series of binary volumes in order to achieve proper filtering [31],
which is shown in the second row of figure 24. Mapping all object
IDs of the current object set to 1.0 and all other IDs to 0.0 allows

Figure 22: Instead of multiple one-dimensional transfer functions for
different objects, we are using a single global two-dimensional transfer
function texture. After determining the object ID for the current
fragment via filtering, the fragment shader appropriately samples this
texture with (density,object_id) texture coordinates.
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Figure 23: Object boundaries with voxel resolution (left) vs. object
boundaries determined per-fragment with linear filtering (right).

using a global threshold value s; of 0.5. We of course do not want
to store these binary volumes explicitly, but perform this mapping
on-the-fly in the fragment shader by indexing the object set mem-
bership texture that is active in the current rendering pass. Filtering
in the other passes simply uses an alternate binary mapping, i.e.,
other object set membership textures.

One problem with respect to a hardware implementation of this
approach is that texture filtering happens before the sampled values
can be altered in the fragment shader. Therefore, we perform fil-
tering of object IDs directly in the fragment shader. Note that our
approach could in part also be implemented using texture palettes
and hardware-native linear interpolation, with the restriction that
not more than four transfer functions can be applied in a single ren-
dering pass. However, we have chosen to perform all filtering in the
fragment shader in order to create a coherent framework with a po-
tentially unlimited number of transfer functions in a single render-
ing pass and prepare for the possible use of cubic boundary filtering
in the future.

After filtering yields values in the range [0.0, 1.0], we once again
come to a binary decision whether a given fragment belongs to the
current object set by comparing with a threshold value of 0.5 and
rejecting fragments with an interpolated value below this threshold
(figure 24, third row).

Actual rejection of fragments is done using the KIL instruc-
tion of the hardware fragment shader that is available in the
ARB_fragment_program OpenGL extension, for instance. It can
also be done by mapping the fragment to RGBA values constitut-
ing the identity with respect to the current compositing mode (e.g.,

Figure 24: Each fragment must be assigned an exactly defined object
ID after filtering. Here, IDs 3, 4, and 5 are interpolated, yielding the
values shown in blue. Top row: choosing a single threshold value s,
that works everywhere is not possible for three or more objects. Sec-
ond row: object IDs must be converted to 0.0 or 1.0 in the fragment
shader before interpolation, which allows using a global s; of 0.5.
After thresholding, fragments can be culled accordingly (third row),
or mapped back to an object ID in order to apply the corresponding
transfer function (fourth row).



Figure 25: Selecting the transfer function on a per-fragment basis.
In the left image, point-sampling of the object ID volume has been
used, whereas in the right image procedural linear interpolation in
the fragment shader achieves results of much better quality.

an alpha of zero for alpha blending), in order to not alter the frame
buffer pixel corresponding to this fragment.

Linear boundary filtering. For object-aligned volume slices,
bi-linear interpolation is done by setting the hardware filtering
mode for the object ID texture to nearest-neighbor and sampling it
four times with offsets of whole texels in order to get access to the
four ID values needed for interpolation. Before actual interpolation
takes place, the four object IDs are individually mapped to 0.0 or
1.0, respectively, using the current object set membership texture.

We perform the actual interpolation using a variant of texture-
based filtering, which proved to be both faster and use fewer in-
structions than using LRP instructions. With this approach, bi-linear
weight calculation and interpolation can be reduced to just one tex-
ture fetch and one dot product. When intermediate slices are in-
terpolated on-the-fly [27], or view-aligned slices are used, eight in-
stead of four input IDs have to be used in order to perform tri-linear
interpolation.

Combination with pre-integration. The combination of pre-
integration [5] and high-quality clipping has been described re-
cently [28]. Since our filtering method effectively reduces the seg-
mentation problem to a clipping problem on-the-fly, we are using
the same approach after we have mapped object IDs to 0.0 or 1.0,
respectively. In this case, the interpolated binary values must be
used for adjusting the pre-integration lookup.

Multiple per-object transfer functions in a single rendering pass

In addition to simply determining whether a given fragment belongs
to a currently active object or not, which has been described in the
previous section, this filtering approach can be extended to the ap-
plication of multiple transfer functions in a single rendering pass
without sacrificing filtering quality. Figure 25 shows the difference
in quality for two objects with different transfer functions (one en-
tirely red, the other entirely yellow for illustration purposes).

In general hardware-accelerated volume rendering, the easiest
way to apply multiple transfer functions in a single rendering pass
would be to use the original volume texture with linear interpola-
tion, and an additional separate point-sampled object ID texture.
Although actual volume and ID textures could be combined into
a single texture, the use of a separate texture to store the IDs is
mandatory in order to prevent that filtering of the actual volume
data also reverts back to point-sampling, since a single texture can-
not use different filtering modes for different channels and point-
sampling is mandatory for the ID texture. The hardware-native lin-
ear interpolation cannot be turned on in order to filter object IDs,
and thus the resolution of the ID volume is easily discernible if the
transfer functions are sufficiently different.

In order to avoid the artifacts related to point-sampling the ID
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texture, we perform several almost identical filtering steps in the
fragment shader, where each of these steps simultaneously filters
the object boundaries of four different objects. After the fragment’s
object ID has been determined via filtering, it can be used to access
the global transfer function table as described in section 2.2 and il-
lustrated in figure 22. For multiple simultaneous transfer functions,
we do not use object set membership textures but the similar ex-
tended concept of transfer function assignment textures, which is
illustrated in the right image of figure 20.

Each of these textures can be used for filtering the object ID
volume with respect to four different object IDs at the same time
by using the four channels of an RGBA texture in order to per-
form four simultaneous binary classification operations. In or-
der to create these textures, each object set membership texture is
converted into [#ob jects/ﬂ transfer function assignment textures,
where #0b jects denotes the number of objects with different trans-
fer functions in a given object set. All values of 1.0 corresponding
to the first transfer function are stored into the red channel of this
texture, those corresponding to the second transfer function into the
green channel, and so on.

In the fragment shader, bi-linear interpolation must index this
texture at four different locations given by the object IDs of the
four input values to interpolate. This classifies the four input object
IDs with respect to four objects with just four 1D texture sampling
operations. A single linear interpolation step yields the linear in-
terpolation of these four object classifications, which can then be
compared against a threshold of (0.5,0.5,0.5,0.5), also requiring
only a single operation for four objects. Interpolation and thresh-
olding yields a vector with at most one component of 1.0, the other
components set to 0.0. In order for this to be true, we require that
interpolated and thresholded repeated binary classifications never
overlap, which is not guaranteed for all types of filter kernels. In
the case of bi-linear or tri-linear interpolation, however, overlaps
can never occur [31].

The final step that has to be performed is mapping the binary
classification to the desired object ID. We do this via a single dot
product with a vector containing the four object IDs corresponding
to the four channels of the transfer function assignment texture (fig-
ure 20, right). By calculating this dot product, we multiply exactly
the object ID that should be assigned to the final fragment by 1.0.
The other object IDs are multiplied by 0.0 and thus do not change
the result. If the result of the dot product is 0.0, the fragment does
not belong to any of the objects under consideration and can be
culled. Note that exactly for this reason, we do not use object IDs
of zero.

For the application of more than four transfer functions in a sin-
gle rendering pass, the steps outlined above can be executed multi-
ple times in the fragment shader. The results of the individual dot
products are simply summed up, once again yielding the ID of the
object that the current fragment belongs to.

Note that the calculation of filter weights is only required
once, irrespective of the number of simultaneous transfer functions,
which is also true for sampling the original object ID textures.

Equation 3 gives the major fragment shader resource require-
ments of our filtering and binary classification approach for the case
of bi-linear interpolation with LRP instructions:

Hobj
4TEXJD+4[MW

Hobj
TEX_ID + 3 [M]

LRP, (3)
in addition to one dot product and one thresholding operation (e.g.,
DP4 and SGE instructions, respectively) for every [#objects/4]
transfer functions evaluated in a single pass.

Similarly to the alternative linear interpolation using texture-
based filtering that we have outlined in section 2.3, procedural
weight calculation and the LRP instructions can once again also be
substituted by texture fetches and a few cheaper ALU instructions.



Figure 26: A single ray corresponding to a given image pixel is allowed
to pierce objects that use their own object-local compositing mode.
The contributions of different objects along a ray are combined with
a single global compositing mode. Rendering a segmented data set
with these two conceptual levels of compositing (local and global) is
known as two-level volume rendering.

On the Radeon 9700, we are currently able to combine high-quality
shading with up to eight transfer functions in the same fragment
shader, i.e., we are using up to two transfer function assignment
textures in a single rendering pass.

2.4 Two-Level Volume Rendering

The final component of the framework presented in this chapter
with respect to the separation of different objects is the possibility to
use individual object-local compositing modes, as well as a single
global compositing mode, i.e., two-level volume rendering [10, 11].
The local compositing modes that can currently be selected are al-
pha blending (e.g., for DVR or tone shading), maximum intensity
projection (e.g., for MIP or contour enhancement), and isosurface
rendering. Global compositing can either be done by alpha blend-
ing, MIP, or a simple summation of all contributions.

Although the basic concept of two-level volume rendering is best
explained using an image-order approach, i.e., individual rays (fig-
ure 26), in the context of texture-based volume rendering we have
to implement it in object-order. As described in section 2.2, we are
using two separate rendering buffers, a local and a global composit-
ing buffer, respectively. Actual volume slices are only rendered
into the local buffer, using the appropriate local compositing mode.
When a new fragment has a different local compositing mode than
the pixel that is currently stored in the local buffer, that pixel has
to be transferred into the global buffer using the global composit-
ing mode. Afterward, these transferred pixels have to be cleared

TransferLocalBufferIntoGlobalBuffer() {
ActivateContextGlobalBuffer();
DepthTest ( NOT_EQUAL );
StencilTest ( RENDER_ALWAYS, SET.ONE );
RenderSliceCompositingIds( DEPTH_BUFFER ) ;
DepthTest ( DISABLE );
StencilTest ( RENDER_WHERE ONE, SET_ZERO );
RenderLocalBufferImage ( COLOR_BUFFER ) ;

Table 2: Detecting for all pixels simultaneously where the composit-
ing mode changes from one slice to the next, and transferring those
pixels from the local into the global compositing buffer.
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Figure 27: Detecting changes in compositing mode for each indi-
vidual sample along a ray can be done exactly using two rendering
buffers (left), or approximately using only a single buffer (right).

in the local buffer before the corresponding new fragment is ren-
dered. Naturally, it is important that both the detection of a change
in compositing mode and the transfer and clear of pixels is done for
all pixels simultaneously.

In order to do this, we are using the depth buffer of both the local
and the global compositing buffer to track the current local com-
positing mode of each pixel, and the stencil buffer to selectively
enable pixels where the mode changes from one slice to the next.
Before actually rendering a slice (see table 1), we render IDs corre-
sponding to the local compositing mode into both the local and the
global buffer’s depth buffer. During these passes, the stencil buffer
is set to one where the ID already stored in the depth buffer (from
previous passes) differs from the ID that is currently being rendered.
This gives us both an updated ID image in the depth buffer, and a
stencil buffer that identifies exactly those pixels where a change in
compositing mode has been detected.

We then render the image of the local buffer into the global
buffer. Due to the stencil test, pixels will only be rendered where
the compositing mode has actually changed. Table 2 gives pseudo
code for what is happening in the global buffer. Clearing the just
transferred pixels in the local buffer works almost identically. The
only difference is that in this case we do not render the image of
another buffer, but simply a quad with all pixels set to zero. Due to
the stencil test, pixels will only be cleared where the compositing
mode has actually changed.

Note that all these additional rendering passes are much faster
than the passes actually rendering and shading volume slices. They
are independent of the number of objects and use extremely sim-
ple fragment shaders. However, the buffer/context switching over-
head is quite noticeable, and thus correct separation of compositing
modes can be turned off during interaction. Figure 27 shows a com-
parison between approximate and correct compositing with one and
two compositing buffers, respectively. When only a single buffer is
used, the compositing mode is simply switched according to each
new fragment without avoiding interference with the previous con-
tents of the frame buffer.

The visual difference depends highly on the combination of com-
positing modes and spatial locations of objects. The example in
figure 27 uses MIP and DVR compositing in order to highlight the
potential differences. However, using approximate compositing is
very useful for faster rendering, and often exhibits little or no loss
in quality. Also, it is possible to get an almost seamless perfor-
mance/quality trade-off between the two, by performing the buffer
transfer only every n slices instead of every slice. See figures 17,
28, and 29 for two-level volume renderings of segmented volume
data.



Figure 28: Hand data set (256x128x256) examples of different rendering and compositing modes. (top, left) skin with unshaded DVR, vessels
and bones with shaded DVR; (top, right) skin with contour rendering, vessels with shaded DVR, bones with tone shading; (bottom, left) skin
with MIP, vessels with shaded DVR, bones with tone shading; (bottom, right) skin with isosurfacing, occluded vessels and bones with shaded

DVR.
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Figure 29: Head and neck data set (256x256x333) examples of different rendering and compositing modes. (top, left) skin disabled, skull with
shaded DVR; (top, right) skin with MIP, skull with isosurfacing; (bottom, left) skin with contour rendering, skull with tone shading; (bottom,
right) skin with contour rendering, skull with isosurfacing.
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Figure 1: Examples of smart visibility visualizations: cut-away view visualization of complex dynamical systems [17] (a), volumetric splitting [14]
(b), browsing in the features through leafer deformation [18] (c), and cutaway views visualization of peripheral arteries [23] (d).

ABSTRACT

In this part of the tutorial we first discuss expressive visualization
techniques that provide maximal visual information through dy-
namic change in visual representation. Such techniques originate
from technical illustration and are called cut-away views or ghosted
views. We discuss basic principles and techniques for automatic
generation of cut-away and ghosted visualizations. One approach
is importance-driven feature enhancement, where the visibility of a
particular feature is determined according to assigned importance
information. The most appropriate level of abstraction is specified
automatically to unveil the most important information. Addition-
ally we show the applicability of cut-away views on particular vi-
sualization examples. Another approach is context-preserving illus-
trative volume rendering, which maps transparency to the strength
of specular highlights. This allows to see inside the volume in the
areas of highlights. The human perception can easily complete the
shape of partially transparent parts and therefore additional infor-
mation can be shown there. Next we discuss a system for direct
volume manipulation (such as 3D painting) in combination with
cut-away views. Here manipulation metaphores inspired by tradi-
tional illustration are discussed. An important aspect for readily
understandable visualization is labeling the data with annotations.
The combination of automatic label placement with visualized data
is presented and new labeling metaphors from the field of informa-
tion visualization are discussed.

The second category of smart visibility techniques are based on
modification of the spatial arrangement of structures. Such tech-
niques are closely related to exploded views, often used for assem-
bly instructions. We discuss visualization techniques that separate
context information to unveil the inner focus information by split-
ting the context into parts and moving them apart. Another visual-
ization technique enables browsing within the data by applying de-
formations like leafing, peeling, or spreading. In the case of time-
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varying data we present another visualization technique which is
related to exploded views and is denoted as fanning in time.

Keywords:  view-dependent visualization, focus+context tech-
niques, level-of-detail techniques, illustrative techniques

1 INTRODUCTION

A typical problem in visualization of three-dimensional or higher-
dimensional data is that the most interesting features are not easily
perceivable, because they are occluded by other, less important fea-
tures. Traditional visualization techniques classify the visual repre-
sentation of features independently from the viewpoint. The global
setting limits viewpoint positions and viewing angles to a range,
where the important structures are not occluded by other objects.

Widely used technique to resolve the visibility problem is incor-
porating clipping planes. A clipping plane defines two half-spaces.
The context information that spatially belongs to one half-space is
visible, while the other is not displayed. This is a very very easy
and intuitive way to unveil the most important data. However such
approach eliminates less important objects also in those viewing sit-
uations, where it would not be necessary, or even worse the spatial
arrangement information is lost, because too much of context in-
formation has to be removed. Different optical properties and ren-
dering techniques (e.g., contour rendering) in the suppressed half-
space ease the problem only to a certain degree.

Effective way to visualize three-dimensional data and resolve the
occlusion of the most prominent information can be analogous to
technical and medical illustrations [9, 11]. Illustration challenges
are very similar in this case. Illustration techniques such as cut-
away views, ghosted views, or exploded views effectively unveil
most important information by changing the level of visual abstrac-
tion or modifying the spatial arrangement of features. In the fol-
lowing we will describe illustrative visualizations that have been
inspired by these illustration techniques. Figure 2 shows examples
of expressive illustrations that enables to see interesting structures.



Further illustrations featuring expressive techniques can be found
on the referenced web-sites [12, 13].
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Figure 2: Different types of hand crafted expressive illustrations:
cut-away view (a), ghosted view (b), section view (c), and exploded
view (d). Technical illustrations are courtesy of Kevin Hulsey lllus-
tration, Inc [13].

2 CUT-AWAY VIEWS, SECTION VIEWS, AND GHOSTED
VIEWS

The popularity of cut-away and ghosted views is demonstrated by
the fact that they can be found in all books on technical or medi-
cal illustrations [9, 11]. An automatic generation of cut-away and
ghosted views for polygonal data was introduced by Feiner and
Seligmann [8]. They propose a family of algorithms that auto-
matically identify potentially obscuring objects and display them
in a ghosted or cut-away view. The proposed algorithms exploit z-
buffer rendering, therefore they are suitable for real-time interaction
achieved by hardware acceleration. Interactive semi-transparent
views, section views, and cut-away views for polygonal data have
been recently revised by Diepstraten et al. [6, 7]. Semi-transparent
views unveil interesting objects obscured by other context infor-
mation by increasing the transparency of the context. Diepstraten
et al. propose to adhere to an effective set of rules for the auto-
matic generation of the discussed illustrative techniques. For semi-
transparent illustrative views the following three rules should be
taken into consideration:

e faces of transparent objects never shine through

e objects occluded by two transparent objects do not shine
through

e transparency falls-off close to the edges of transparent objects

For section views and cut-away views they propose to follow seven
other rules:
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e inside and outside objects have to be distinguished from each
other

e a section view is represented by the intersection of two half
spaces

e the cut-out of a section view is aligned to the main axis of the
outside object

e an optional jittering mechanism is useful for cut-outs
e a mechanism to make the walls visible is needed
e cut-outs consist of a single hole in the outside object

e interior objects should be visible from any given viewing an-
gle

The mentioned algorithms and rules for cut-away views, sec-
tion views, and ghosted views have been applied to polygonal data
and are generally applicable in computer graphics. For an arbitrary
clipping of volumetric data Weiskopf et al. [26] propose a number
of effective techniques to increase performance and visual quality.
The implementation of clipping operations is mapped to commod-
ity graphics hardware to achieve interactive framerates. Addition-
ally to clipping all rendering computations are performed on the
graphics hardware. Per-fragment operations estimate on-the-fly the
visibility according to the clipping geometry and adjust the shad-
ing in areas where clipping occurs. In the following Sections 2.1
and 2.2 we focus more on visualization related tasks. First we will
discuss an approach for automatic cut-away and ghosted views out
of scientific volumetric data [24, 25]. This technique employs ad-
ditional information about the importance of a particular feature.
Afterwards we will show the potential of such expressive views on
a set of applications.

2.1 Importance-Driven Feature Enhancement

Traditionally features within the volume dataset are classified by
optical properties like color and opacity. With importance-driven
feature enhancement we additionally assign one more dimension
to features, which describes their importance. Importance encodes
which features are the most interesting ones and have the highest
priority to be clearly visible. Prior to the final image synthesis,
the visibility of important features is estimated. If less important
objects are occluding features that are more interesting, the less im-
portant ones are rendered more sparsely, e.g., more transparently.
If the same object does not cause any unwanted occlusions in other
regions of the image, it is rendered more densely, e.g., opaque, in
order to see its features more clearly. This allows to see all inter-
esting structures irrespective if they are occluded or not, and the
less important parts are still visible as much as possible. Instead of
using constant optical characteristics, which are independent from
the viewpoint, we use several levels of sparseness for each feature.
Levels of sparseness correspond to levels of abstraction, i.e., we
do not assign a single optical characteristic, but several character-
istics with smooth transitions in between. These multiple levels of
sparseness allow the object to continuously change its visual ap-
pearance from a very dense representation to a very sparse one.
Which level of sparseness will be chosen, is dependent on the im-
portance of the particular object and the importance of objects in
front and behind. The level of sparseness thus may continuously
vary within a single feature. For different viewpoints the same part
of a feature may be represented with different levels of sparseness.
To determine the sparseness level for each object or parts thereof
the rendering pipeline requires an additional step, which we call
importance compositing. This step evaluates the occlusion accord-
ing to the viewpoint settings, takes the importance factor of each



0.1

1 dense

representation

'

- max
importance

Figure 3: Stages in the pipeline of importance-driven volume rendering: Volumetric features are assigned importance values (left image). The
volume is traversed (center) in the importance compositing stage to estimate levels of sparseness (right). These levels are used to enhance or
suppress particular parts of the volume. The resulting images then emphasize important features.

feature into account and assigns to each feature a particular level of
sparseness. The final synthesis results in images with maximal vi-
sual information with respect to the predefined object importance.
The interrelationship between object importance, importance com-
positing, and levels of sparseness is depicted in Figure 3. The im-
portance compositing traverses the whole volume to identify ob-
ject occlusions and assigns the corresponding level of sparseness to
each object. Object importance translates to object visibility in the
result image. This causes different rendering settings for the con-
text object (with importance 0.1) in the area of the image which is
covered by the focus object (importance 0.7).

Figure 4 shows a cut-away view of multi-dimensional volumetric
data of hurricane Isabel using importance-driven feature enhance-
ment. The important feature was the hurricane eye selected through
a cylindrical proxy geometry. Inside the cylinder the total precipi-
tation mixing ratio is visualized. Thanks to the cut-away view it is
possible to have a clear view at this property close to the eye of the
hurricane. Outside the cylinder is the context area where the total
cloud moisture is visualized.

Figure 4: Cut-away visualization of a multidimensional volumetric
data of hurricane Isabel.

Figure 5 illustrates a ghosted view of the scalar volumetric data
of a Leopard gecko. The small internal structure (in yellow) of the
Leopard gecko dataset is the most interesting information and has
been pre-segmented. The body is considered as context informa-
tion. In the area of occlusion the visual representation of the gecko
body is reduced to contours to have a clear view on the interesting
internal organ.

2.2 Applications of Expressive Visualizations

Expressive visualizations inspired by illustration techniques are
useful for various visualization tasks. Straka et al. [23] are applying
a cut-away technique for CT-angiography of peripheral arteries in
human legs. The goal is to have a clear view on the vessels, which
are partially segmented by their centerline. For a clear understand-
ing of the spatial arrangement it is necessary to visualize also bones
and skin contours. To have an unobstructed view on the vessel for
each viewpoint it is necessary to perform a cut in the bone. To avoid
potential misinterpretations, the cut is clearly depicted as an artifi-
cial and sharp change in the data. This is illustrated in Figure 1

(d).
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Figure 5: Ghosted visualization using contours in a CT scan of a
Leopard gecko.

Krueger et al. [15] incorporate smart visibility to improve the
spatial perception of feature arrangement for surgical planning.
They present a system for the neck dissection planning, where the
lymph nodes are emphasized using ghosted views to easily convey
their spatial position. Other features such as muscles or bones are
either supressed locally or globally represented in a sparse way to
support the understanding of the feature arrangement. The neck dis-
section planning system is designed for interactive path-planning
for minimal invasive interventions. Figure 6 clearly shows all
lymph nodes in the neck to enable optimal path planning for the
neck dissection.

Figure 6: Smart visibility of lymph nodes in the neck. All lymph
nodes are clearly visible, the currently analyzed one is additionally
emphasized by a circle around it.

An extension to direct volume rendering that focuses on increas-
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Figure 7: Medical illustration of a human hand (a) compared to the visual-
ization of a human hand using a dynamic opacity approach as a function of
the specular highlight level [2] (b).

ing the visibility of features has been proposed by Bruckner et
al. [2]. This technique is known as illustrative context-preserving
volume rendering. The approach maps transparency to the strength
of specular highlights. This allows to see inside the volume in the
areas of highlights. The human perception can easily complete the
shape of partially transparent parts and therefore additional infor-
mation can be shown there. A further parameter tunes the ratio
between specularity and transparency. A depth parameter deter-
mines how far one can look inside a volumetric object (fuzzy clip-
ping). Certain data-value ranges can be excluded from the trans-
parency modulation to allow a clear view on specific (inner) struc-
tures. Their approach is compared to a medical illustration of a
human hand in Figure 7.

An interactive tool for cut-away and ghosting visualizations has
been recently proposed by Bruckner [3, 4]. The tool is denoted
as VolumeShop and it is an interactive system which features ad-
vanced manipulation techniques and illustrative rendering tech-
niques to generate interactive illustrations directly from the volu-
metric data. The system is using latest-generation texture-mapping
hardware to perform interactive rendering applying various kinds
of rendering styles. It implements a multi-volume concept to en-
able individual manipulations of each volume part. The segmenta-
tion of the volumetric objects can be done directly via 3D painting.
Apart from importance-driven visualization resulting into cut-away
and ghosted views, VolumeShop features a label management to
introduce basic descriptions for the visualized data. To focus at a
particular feature, this feature can be moved from its original spa-
tial position. To indicate its original spatial position it is possible to
display a ghost there, or add additional markers such as fanning or
arrows. Some ghosted visualizations generated using VolumeShop
are shown in Figure 8.

Previous applications of cut-away views are viewpoint-
dependent, i.e., the shape and location of the cut is directly de-
pendent on the viewpoint information. Volume cutting is another
medical visualization technique that is related to cut-away views,
but the cut shape is not influenced by viewpoint settings. Pflesser
et al. [21] present an interactive drill-like tool for surgical training,
which is based on the multi-volume concept. Owada et al. [20]
extend volume cutting by incorporating two-dimensional textures
that are mapped on the cut surface. This enhances the visualization
with additional information of the internal arrangement of bones or
muscles. Such a concept can be very useful for anatomy educa-
tion for example. Both volume cutting techniques are illustrated in
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Figure 8: Interactive ghosted visualizations of the engine block and
human head datasets [3, 4].

Figure 9.

Figure 9: Volume cutting featuring two-dimensional textures for
anatomy education [20] (left) and volume cutting with a drill-like
tool for surgical education [21] (right).

Visualization of complex dynamical systems can be also en-
hanced by incorporating cuts into stream surfaces. Streamarrows
proposed by Loffelmann et al. [17] exploit cutting for enhancing
the visual information. They use arrows as a basic element for cut-
ting away part of the stream surface. This allows to see through the
surface and perceive other surfaces or structures behind. Animat-
ing streamarrows along the stream surface enables to see beyond
the front stream surfaces and perceive the flow direction. Streamar-
rows belong to the category of view-point independent cut-away
techniques and are shown in Figure 1 (a).

3 EXPLODED VIEWS AND DEFORMATIONS

Exploded views and deformations modify the spatial arra